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The use of curves to represent two-dimensional
structures is an important part of many scientific
investigations. For example, geographers use curves
extensively to represent map features such as contour
lines, roads, and rivers. Circuit layout designers use
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CUrves 1o speinny the vv’nnng between circuits. Because
of the very large amount of data involved and the need
to perform operations on this data efficiently, the
representation of such curves is a crucial issue. A
hierarchical representation consisting of binary trees.
with a special datum at each node is described. This"
datum is called a strip and the tree that contains such
data is called a strip tree. Lower levels in the tree
correspond to finer resolution representations of the
curve. The strip tree structure is a direct consequence
of using a special method for digitizing lines and
retaining all intermediate steps. This gives several
desirable properties. For curves that are well-behaved,
intersection and point-membership (for closed curves)
calculations can be resolved in O(log n) where n is the
number of points describing the curve. The curves can
be efficiently encoded and displayed at various
resolutions. The representation is closed under
intersection and union and these operations can be
carried out at different resolutions. All these properties
depend on the hierarchical tree structure which allows
primitive operations to be performed at the lowest
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possible resolution with great computational time
savings.

Strip trees is a linear interpolation scheme which
realizes an important space savings by not representing
all the points explicitly. This means that even when the

overhead of the tree |nr|pv1ng is added. the ctnrngp
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requirement is comparable to raster representations
which do represent most of the points explicitly.

Key Words and Phrases: boundary line
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I. Introduction

A general representation for planar curves is pre-
sented. This representation allows operations such as
union and intersection to be performed efﬁciently and is
thus of greast interesi in fields such as geography and
computer-aided circuit design, which use data bases of
planar curves.

Consider the application to geography. A map has
several interesting kinds of features: contour lines, lakes,
rivers, and roads. These can be roughly divided into four

feature classes [13].

Feature Examples in map domain

points towns (large scale maps)
bridges (small scale maps)

lines roads, coastlines

strips wide roads, rivers

areas lakes, counties

Our main interest is in representing curves and areas.
A point is such a simple datum that it can easily be
treated as a primitive in any representation. Collections
of points from a single class can be efficiently represented
as k-d trees [i, Z]. A strip feature is essentially a line
where a locally varying thickness is important, e.g., rivers
and roads. Our representation of curves will encompass
these types of features.

Collections of these map features are regarded as a
data base that might be used to perform the following
tasks:

—Find where a road intersects a river;

—Display a subset of map features that appear in a
given map secior;

—Find out if a given point is in a region;

—Search an aerial image near the edge of a dock for
ships.

Communications May 81
of Volume 24
the ACM Number 5



Fig. . A Curve Dis)layed at Two Resolutiins Using the Hierarchical
Structure.

A very important aspect of all these tasks is that we may
be satisfied if they are performed at lower resolutions
than the ultimate resolution representable.

Our representation of curves consists of a binary tree
structure where, in general, lower levels in the tree
correspond to finer resolutions. The tree structure is a
direct consequence of using Duda and Hart’s [5] method
for digitizing lines (see also [16]) and retaining all inter-
mediate steps in the digitization process. Figure 1 is an
example of a curve represented at two levels (resolutions)
in the tree structure.

Peucker [10] recognized an idea similar to that of
representing a curve by strips. In particular, he was able
to find line intersection and point-in-polygon algorithms
by using sets of bands. Burton [3], on the other hand,

n

Fig. 2. Definition of a Strip Segment.
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covered curves with tree hierarchies of rectangles of a
single orientation. Strip trees are an improvement over
both of these ideas because the notion of a strip is a more
intuitive and computationally cleaner way of covering
curves. Consequently, the algorithms are simpler and
more efficient, the curve—area intersection and area-area
intersection and union can now be dealt with, and the
tree structures are closed under these operations.

II. The Strip Tree

1I. A. Notation

A strip S is defined to be a six-tuple (x5, Xe, wr, wi)
where ! x; = (xs, y») denotes the beginning of the strip,
x. denotes the end, and w, and w; are right and left
distances of the strip borders from the directed line
segment [ xs, x.). These definitions are depicted in Figure
2. wis defined as w, + wi. We retain both w, and wy, i.e.,
all six parameters even though only five are needed to
define a strip. The usefulness of the redundant charac-
terization will become clear after strip tree operations are
looked at. When the strip consists of a line segment,
precision is important in defining the end points x» and
x.. Thus, x; is regarded as included in the segment and
X, is not, i.€., the primitive strip is the half-open segment
[xs, Xc). Occasionally, discussion about the area of a
strip, which is simply wijxs — x|}, will be necessary. This
area is denoted by A.

A curve is approximated by an open polygonal line
given by an ordered list of discrete points Xo, ..., Xn,
subsets of which may be collinear. For the moment these

! Throughout this paper we will use x to denote a point in the
plane with coordinates (x, y).
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Fig. 3. An Example of the Digitization Algorithm (w* = 3).
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points are considered as connected; later this condition
will be relaxed. A curve is represented at resolution w* if
there exists an ordered sequence of m strips

Sk, k=0,...,m—1

-such that
(w1 + W) < w* k=0,...,m—1,

m-1
x;, € U Si=0,...,n
k=0

II. B. Digitization
Suppose a curve C is denoted by [Xo, . . . X»). For any
resolution w* = 0, this line can be approximated with
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strips as follows:

Algorithm A0 Digitization

Find the smallest rectangle with a side parallel to the line L through xo
and x, which just covers all the points. This rectangle is the strip of the
root node of the strip tree. Now pick a point x, which touches one of
the two sides of the rectangle that are parallel to L. Repeat the process
for each of the two sublists [xo, . .., Xx) and [Xx, ..., Xx). This results
in two subtrees that are sons of the root node. The process terminates
when all strips have width w < w*.

Figure 3 shows an example of two levels of recursion of

this algorithm.

To see formerly that the convergence is guaranteed,
note that a curve C of length P can always be approxi-
mated by a single strip segment with width P. Thus, for
any w there must be a strip tree with leaves consisting of

no more than P/w strip segments which approximate C.
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Fig. 4. Regular and Nonregular Strips.
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Since the digitization algorithm splits each segment into
two parts such that each part has finite length, the process
must ultimately consider strips of width w or less.

In the digitization process, special cases arise when
the curve is closed or extends beyond its endpoints. The
scheme works for closed curves where Xo = X, if dis-
tances are measured with respect to the tangent to the
point xo. To define the tree unambiguously, the point xo
can be picked as the end nearest the origin of the largest
diameter of the closed curve. In the second case, either
of the ends of the strip, x, or x., may not be on the curve,
but are still chosen to be on the line L so that the curve
is entirely contained within the strip.

Algorithm AO does not take advantage of the fact
that the points are ordered by arc length. This can be
used to improve the digitization algorithm in the follow-
ing way.

Algorithm A0’ Improved Digitization:

Take pairs of points (Xo, X1), (X1, X2) . . . (Xr—1, X») and cover them with

strips S¢ -+ Sh-i. Now take pairs of these strips (83, S1), (51, S3)
- (Si-2, Si-1) and cover them with larger strips S3, S3, ..., etc. If

there are an odd number of strips, use the extra strip at the next level.
Ultimately, there will be a single root strip,

This algorithm is of O(n) as opposed to the previous
algorithm, O(n log n). The strips in the A0’ digitization
do not cover the curve as tightly as those from Algorithm
A0, but the complexity of the algorithms that operate on
these trees is the same. For our purposes, it is assumed
that the trees have been created by the A0 Algorithm.
Solely for the purpose of simplifying the algorithms
to follow, the strip trees are regarded as completely
expanded down to a primitive level of unit line segments

on a discrete grid, even when the underlying curves are

collinear, i.e., the algorithms assume that at the leaf level,
Xo and x. are grid neighbors on some discrete grid. For
example, a primitive level for the example of Figure 3
would be ((3, 7), (4,8), (5,9), (6,10), (7,11) (8,11), (9,12),
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NON-REGULAR

(10,11), (11,10), (11,9), (12,8), (13,7), (14,6), (14,5), (15,4),
(16,4), (17.,5), (18,5), (19,6), (20,7)). The reasons for this
will become apparent when the algorithms are described.
It will also become apparent that this simplification is
not essential. Finally, the modifications for curves of
arbitrary segments are described.

II. C. Regular Strips
It is important to know whether a strip is regular. A
strip is defined to be regular if its underlying curve:

(1) is connected;

(2) has its endpoints touching the ends of the strip..
Examples of regular and nonregular strips are shown in
Figure 4. To keep track of this property, strips have an
associated bit C(S) such that

C(S')={

The introduction of the regularity bit C(S) also
allows us to digitize curves that consist of disconnected
parts. To do this, the segments are ordered and Algo-
rithm AO is used. The only modification required is to
set C(S) = 1 if the underlying curve turns out not to be
connected.

1 ifstrip S is regular;
0 otherwise.

II. D. Strip Tree Definitions

The binary tree resulting from the digitization process
is called a strip tree, where the datum at each node is a
strip S. The leaf nodes of the tree are initially ordered
on arc length. (It will be seen later that when intersecting
two areas that are represented in strip trees, this property
is sometimes not preserved)

farmally dafinad ac
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is L0Tiiiany GCLneG as i

i Dlll}l UL 1
node consisting of the tuple (S, LSon, RSon), i.e., (X,
Xe, Wi, Wr, LSon, RSon) where LSon and RSon are strip
trees that are either null or have root strips that are
related to S by the digitization scheme.
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Fig. 5. A Portion of an Encoding Using m-ary Trees.

CURVE

II. E. Why Binary Trees?

The curves can also be represented as a tree with
nodes of more than two siblings. In fact, nodes could
have different numbers of ordered siblings. Figure 5
shows an example of the alternate encoding scheme. In
certain cases this may be a more concise representation
of the curve and for all the algorithms that follow, the

operations can be extended from two sons to multiple
sons. However, this change does not alter the complexity
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of the operations that we would like to perform. In fact
the nonbinary tree of the operations can be more ineffi-
cient than the binary tree representation.

I11. Basic Operations on Strip Trees

Computational complexity of the various operations
is difficult to characterize because it depends on the
particular geometry of the curves. If the curves are “well-
behaved,” i.e., if they are relatively smooth and do not
self-intersect fdr more than a few points, then the algo-
rithms are very efficient. What this means for a particular
operation is that in terms of the strip tree, if we only look
at one of the two sons at any node, then the complexity
of the operation is O(log n).

I1I. A. The Length of the Curve

The strip tree provides a simple way of calculating
the length of a curve at a given resolution. To compute
the length of a curve at resolution w* the following

procedure is used. (For clarity, the algorithms are pre- -

sented as procedures in a pseudo-ALGOL language.) Rigor
has been sacrificed mainly in the specification of data
types, but this should be obvious from the earlier defi-
nitions.

Algorithm Al Length of a Curve
Real procedure Length (w*,T');
begin
if w(T) < w* then
return (SQRT ((x(T) = x(T))* + (yuT) = p(T))")
else
return (Length(w*,RSon(T)) + Length (w*,LSon(T)));
end;
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Of course, Length (w*,T’) is only an estimate of the true
length which in the case of Peano and space-filling
curves may be infinite. Such curves have been termed
fractals by Mandelbrot [7], who has suggested schemes
similar to strips for approximating them.

III. B. Testing the Proximity of a Point

To test the proximity of a point to a curve, the notion
is used of the distance of a point to a set that is defined

s follows. For any strip S, ifa point is outside S, then
its distance to S is characterized by the set theoretic
distance d(z,S) = min.es d(z,x) where d is the Euclidean
distance between the points x and z.

The strip tree may be used to find out quickly if a
point is near a curve by exploiting the following property:

Upper Bounds Property

(a) If a point z is inside a regular strip S, then it is, at
most, w(S) units away from the curve C.

(b) If a point z is outside a regular strip S, then the
distance of the point from the curve is bounded by
dz,S) + w(S).

It is interesting to study these bounds as the depth in the
resolution tree increases. Although the convergence is
not monotonic, the bounds do converge to the actual set-
theoretic distance d(z,C) Now suppose we want to an-
swer the question, for some distance do, is d(2,C) < db?
If this question can be answered affirmatively, we will
find this out at the point where any upper bound is less
than do. If the answer is no, then this will be discovered
when the tree has been explored to the point where all
minimum bounds are greater than do. Similar arguments
can be made for the qualitative level of effort required
to answer: Is d(z,C) > do ? It can be seen from this
discussion that the search will be inefficient only if a
large number of the strips are nearly do from z. Figure
6(a) shows this case together with a more representative
example in Figure 6(b). In the former case, if do is equal
to the radius of the circle, all of the strips will be within
the upper and lower bounds. In the latter, more repre-
sentative case, many points on the curve can be elimi-
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Fig. 6. Two of many Possible Geometrics when Testing the Distance
of a Point from a Curve.

~c

nated since their strips will fail the bound checks. To
summarize this discussion, the algorithms to test for
d(z,C) < do and d(z,C) > d, are provided.

First define LowerBound (z,5) for a point z and strip
S as:

if z is inside S then
LowerBound(z,S) = 0

else
LowerBound(z, S) = d(z, S);

and define Upperbound (z,5) as:

if z is inside S then
UpperBound(z,§) = w(S)
else
UpperBound(z,§) = d(z,5) + w(S);

Then the algorithms are as follows:

Algorithm A2 Is a point within dy of a curve?
Boolean procedure Within (z,do, T);
begin
S:=T,
if do < LowerBound(z,S) then return (true);
if do = UpperBound(z,S) then return (false);
return (Within (z,d,LSon(T)) or
Within (z,do,RSon(T)));
end;
Algorithm A3 TIs a point further than d from a curve?
Boolean procedure Further (z,d,, T);
begin
S:=T,
if dy = LowerBound (z,5) then return (false);
if dy = UpperBound(z,S) then return (true),
return (Further (z,do,LSon(T)) and
Further (z,do,RSon(T)));
end;

H1. C. Displaying a Curve at Different Resolutions

As demonstrated in Sec. II, a curve may be repre-
sented as a set of strips such that each strip has a
resolution width less than some fixed value. The strip
tree algorithm to display such a representation is as
follows. This algorithm uses a device-dependent subrou-
tine DisplayRectangle which paints the rectangle on the
particular display device. ‘
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Algorithm A4 Display a curve at resolution w*
procedure CurveDisplay (T,w*);
begin
if w(T') < w* then Display Rectangle (7')
else (CurveDisplay (LSon(T),w*)) and
(CurveDisplay (RSon(T),w*));
end;

III. D. Intersecting Two Trees

One of the important features of the representation
is its’ ability to compute intersections between curves.
Strip trees provide the facility not only to compute
intersection points, but in the case where lower resolution
is satisfactory, to compute small areas containing the
intersection points at great computational savings. In
order to develop the intersection methodology, the fol-
lowing definitions are necessary:

(a) Two strip segments (S derived from C; and S
derived from C,) have a null intersection #f S1NS2
= .

(b) Two strip segments S1,S; have a clear intersection iff’
all the sides of the strips parallel to the line segments
given by [xs Xc)1 and [Xs, X.); intersect and both
strips are regular.

(c) Two strip segments S; and S; have a possible inter-
section if condition (b) is not satisfied, yet SiNS2 #
2.

These cases are illustrated by Figure 7. A fairly obvious

but very important lemma is

CLEAR INTERSECTION LEMMA. If two strip segments have
a clear intersection and the strips are both regular, then
the corresponding curves must also intersect.

(Peucker [10] showed this was true for the similar case of
bands.) To see this for condition (b), consult Fig. 7(b).
With a clear intersection there will be a region R where
the strips overlap. C: will divide into two parts and C;
must cross from one to the other. The only way C; can
do this is by intersecting Ci.

The algorithms to check for intersections between
two curves are recursive and assume the existence of an
integer procedure StripIntersection that will identify the
type of intersection (null, clear, or possible).

Algorithm AS Finding out whether two curves intersect

Comment. If the two root strip segments do not intersect, then the
curves do not intersect. If the root segments have a clear intersection,
then the curves intersect. Since the task is just to determine whether or
not an intersection exists, the algorithm terminates upon finding a clear
intersection. A heuristic in the recursion is to divide the largest strip in
the recursion;

Boolean procedure Intersection (71, Tz);
begin
Comment strips at the leaf levels must be either Null or Clear. A(T')
is the area of the strip at node 7.
Case StripIntersection (T3, T3) of
[Null}
return (false);
{Possible]
if A(Ty) > A(T3) then
return (Intersection( LSon(T1), Tz) or
Intersection(RSon(Th), T2)),
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else return ((Intersection(Th, LSon(T2)) or
Intersection(71, RSon(T2)));
[Clear] '
return(true);

end;

StripIntersection is a procedure which performs the geo-
metrical computations necessary to determine the strip
intersection type according to the earlier definitions. This
procedure is easily modified to return a set of parallelo-
grams comprising intersection points. Other easy modi-
fications can be made to constrain these parallelograms
10 be of a certain size related to the widths of the strips
in 7; and T; i.e., they can be made to be as small as we
want. Figure 8 shows an example of two intersecting
curves at a given resolution. Note, however, that smaller
resolutions may be much more computationally expen-
sive, as shown in Figure 9 where intersection at the
coarsest resolution is simple, but multiple intersections
occur at lower levels.

If the two curves are not too badly intertwined about
each other, the intersection should be computed in O(m

a.

CLEAR

NULL

log (n)) steps where m is the number of intersection
points. It is assumed that for each intersection point, one
branch of each tree will usually have to be examined.

The worst case performance is intolerable because
the algorithm’s computation grows exponentially as long
as all the strip segments in one tree intersect all the strip
segments in the other. In fact, the computation can be
shown to be O(2¥) where K is the sum of the depths in
each tree where the comparisons are taking place! This
assumes that all intersections in the tree above the prim-
itive level are possible. In a practical application, one
way of handling this case would be to report the possible
intersection regions at the point where the limit of some
bound on allotted resources was exceeded.

111. E. The Union of Two Strip Trees

The union of two strip trees can be accomplished by
defining a strip that covers both of the two root strips.
The two curves defined by [X6, ..., X¢), [Xd, ..., Xm)
are treated as two concatenated lists. That is, the resultant
ordering is such that Xo = X0, Xm+n+1 = Xin.

2]
£

POSSIBLE

Fig. 7. Different Ways Strips
Can Intersect.
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Fig. 8. Intersecting Two Curves at Low Resolution.

Algorithm A6 (Union of two strip trees T, and 73)

Define a strip segment that covers the two root strips of T and T». By
construction, this strip can be made to satisfy all the properties of a
strip segment (but it need not be regular). Make this the root node of
a new strip tree.

it e

This construction is shown in Figure 10. This construc-
tion introduces a problem in that the new strip is no
longer regular and therefore the Clear Intersection
Lemma no longer holds. It was partly to overcome this
problem that one bit of information was added to each
node to mark whether the underlying curve is regular.
This is also important, since later algorithms may pro-
duce strips whose underlying curves are not regular.

The regularity bit allows preservation of the elegance
of the previous algorithms in the following manner:
when bit C(5) is not one, the recursion is always applied.
In Algorithm A5 this means that clear intersections are
reported as possible if the bit C(S) is set.
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Fig. 9. An Intersection may be Simple at one Level and Complicated
at Lower Levels.
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IV. Closed Curves Represented by Strip Trees

An area is represented by its boundary which is a
closed curve. As we travel around the boundary it is

[
[
o~

N

A%

Fig. 10. Construction for Union of Strip Trees Representing Two
Curves.
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assumed that the interior is to the right. As mentioned
betore, the digitization method described in Sec. IT works
for closed curves and, incidentally, also for self-inter-
secting curves. Furthermore, if an area is not simply
connected it can still be represented as a strip tree which
at some level has connected primitives. The method for
doing so was described in Sec. III. If a region has holes,
it can be represented by a single boundary curve using
a construction such as the one shown in Figure 11. If the
holes are important, they should be independently rep-
resented as strip trees.

By representing an area in this way many useful
operations can be carried out within the strip tree for-
malism, i.e., area computation, intersection between a
curve and an area, whether a point is inside an area and
intersection between two areas.

IV. A. Area from an Area Strip Tree

Using a method similar to the method for computing
the length of a curve from the strip tree, the area at
different resolutions can be computed. The standard
formula for a polygonal area is used:

-Area = 1 Z;;O (Xi Yir1 = Xiv1 p2).

where i+1 is computed modulo n.

This can be translated into strip notation in a straight-
forward manner. Suppose we have a set of strips S,
k=0,..., m— 1 for some resolution w* as defined in
Sec. II. A. Then the area contribution of each strip is
given by $(xyy. — x.p5). Thus total area at resolution w*
is given by

Area(w*) = T 4,

where A, is the contribution of the corresponding portion
of the area defined by S%. The recursive procedure for
area calculation is as follows:

Algorithm A7 Area Calculation
real procedure Area(w*,T);
begin
if w(T) < w* then
return (}Ooo T)yo(T) ~ xo T)yo( T)))
else
return (Area(w*, LSon(T)) + Area (w*, RSon(T)));
end;

Although error bounds could not be placed on the curve
length, we can bound the area. The error contribution of
each strip is bounded by w(|x, — x.||), so that the total
error is bounded by the sum of these individual bounds.

IV. B. Determining Whether a Point is Inside an Area

The strip tree representation of an area by its bound-
ary allows the determination in a straightforward manner
of whether a point is inside the area. If any semi-infinite
line terminating at the point intersects the boundary of
the area an odd number of times, the point is inside. This
is a familiar result [9] which is computationally simplified
for strip trees in the following manner:
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Fig. 11. A Region with a Hole.
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To decide whether a point z is member of an area
represented by a strip tree, we need only compute the
number of clear intersections of the strip tree with any
semi-infinite strip So which has width 0 and emanates
from z. If this number is odd, then the point is inside the
area.

It is the extension to the Clear Intersection Lemma
which makes this property hold: the underlying curves
may intersect more than once but must intersect an odd
number of times. The following algorithm uses this
property to determine whether a point is inside an area:

Algorithm A8 (Point membership)
Boolean procedure Inside(z, T);
begin
CreateStrip(So, 2);
comment CreateStrip creates a strip for the half line;
if NoOfClearlntersections(So, T') is odd
then return (true)
else return (false);
end;
integer procedure NoOfClearIntersections(S, 7');
begin
Case StripIntersection(S, T') of
[Null] return (0);
[Possible] return (NoOfClearlntersections(S, LSon( T))
+ NoOfClearIntersections (S, RSon(T)));
[Clear] return (1);
end;

Again StripIntersection will report Possible instead
of Clear if either of the strips has C(S) = 0. A potential
difficulty exists with the procedure NoOfClear-
Intersections when the strip So is tangent to the curve.
Many tangent cases will not cause a problem as they will
be under clear intersections in an arrangement similar to
that of Figure 8. However, if the strip S, passes through
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Fig. 12. Indeterminancy of Endpoint Intersections for Inside vs. Out-

T~

side.

an end point at the lowest level, then there is no easy
way of determining the parity of the intersection. Figure
12 shows this amgbiguity. To overcome this difficulty, in
practice a different S is used, but for the examples tried
so far this problem rarely arises.

IV. C. Intersecting a Curve with an Area

The strategy behind intersecting a strip tree repre-
senting a curve with a strip tree representing an area is
to create a new tree for the portion of the curve which
overlaps the area. This can be done by trimming the
original curve strip tree. This is done efficiently by taking
advantage of an obvious property of the intersection
process:

Pruning Property

Consider two strips S. from T. and S, from To. If the
intersection of S, with T, is null, then (1) if any point on
S. is inside T, the entire tree whose root strip is S. is
inside or on T, and (2) if any point on S is outside of
T., then the entire tree whose root strip is S. is outside
of To.

This leads to the recursive procedure A9 for curve—
area intersection using trees. Note that since strip nodes
under a Clear or Possible strip intersection may be
pruned, the bit C for the latter strip is set to zero to
denote that it no longer has the regularity property. Of
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Fig. 13. Decomposition of Area-Area Intersections.
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course, as repeated intersections are carried out with
different areas, more and more upper-level strips may
have their regularity bits set to zero; nevertheless, the
intersected curve is accurately represented at the leaves
of the strip tree. This procedure can be trivially modified
to return the part of the curve that is outside of the area,
by changing “Inside” to “Not Inside”. Similarly, the
boundary of T. can represent the area “Qutside” of the
curve. This tree is denoted 7, and has an extra flag at its
root to denote the change of parity to be used by “In-
side”.

Note that if the strip from the curve is “fatter,” i.e.,
A(Ty) > A(T2), the node can be copied and the intersec-
tion at lower levels resolved, whereas in the converse
case the tree must be sequentially pruned by first inter-
secting the curve strip with the left area strip and then
intersecting the resultant pruned tree with the right area
strip. The “primitive” case is where both strips are leaves

of the tree.

Algorithm A9 (Curve-area intersection)
reference procedure CurveArealnt(7y, T2);
begin
T.:=Ty
comment T is a global used by Clnt;
return(CInt( T, T2));
end;

reference procedure Cint( T, T2);
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Fig. 14. Special Cases for Area—Area Intersection.
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begin

Case StripInt(T;, T3) into
[Null or Primitive}
if Intersection (T, T') = null then
if Inside(Th, T') then return (7T3)
else return (null)
else return (T);
[Clear or Possible] if 4(T1) > A(T:) then

begin
NT = GetNode
C(NT) :=0;

comment nonregular strip;
Xb(NT) = xp(T1);
X NT) :=x.(T);
W](NT) o= W]( Tx);
W (NT) = w.(Th);
LSon(NT) := Clnt (LSon(T)), T2);
RSon(NT) = Clat (RSon(Th), T»);
return{ NT);
end
else comment A( 1)) < A(Tz)
return ( Clnt( Clnt( 71, LSon(T3)), RSon(T2)));
end;

IV. D. Intersecting Two Areas

The problem of intersecting two areas is simple if we
use their strip tree representations. Suprisingly, this prob-
lem can be decomposed into two curve-area intersection
problems (Figure 13). If the boundary of A, is treated as
representing a curve instead of representing an area, and
its strip tree intersects with the strip tree representing Ao,
the lowest level, the result is shown by the thick lines in
Fig. 13(b). If the roles of the two strip trees are reversed,

the result is given by the thick lines in Fig. 13(c). The
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Fig. 15. Area—Area Intersection,

union of these two strip trees which represents the curve
in Fig. 13(d), is the answer we want! Thus we would like
to write the area—area intersection procedure in terms of
strips as follows:

Algorithm A10 (Area-area intersection)
reference procedure AreaArealnt (T, To);
begin )
return
(Union (CurveArealnt (7', T2)), (CurveArealnt (T2, 11)));
end;

where Union is a procedure that the con-

ac g
here Union proc accomp s
struction described in Sec. III. D. The actual procedure
is almost as simple but contains a modified version of
CurveArealnt to handle special cases at the primitive

level. Figure 14 shows these cases. The first case is a way
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of rounding off at the primitive level. The next two cases
cover situations where the boundaries are coincident.
Figure 15 shows the result of an area-area intersection
using strip trees.

Note that in the case of areas that intersect in a way
that fragments their boundaries, the order of the seg-
ments will not be preserved by the intersection proce-
dure. (Until this point it was guaranteed that strips in
the tree would be ordered according to the arc length of
their underlying curves.) However, the integrity of the
tree representation is preserved; the new tree can be
composed with other trees using any of the tree opera-
tions.

IV. E. The Union Operation

The union operation is similar to the intersection
operation. For the union of one area strip tree with
another, use is made of Algorithm A6. The result is an
area strip tree. If these two strip trees do not intersect,
then the union is straightforward and is identical to the
method for curves. However, if the contrary is true, then
a new strip tree must be defined that represents the union
by finding the points of intersection in the same way as
was done for area strip tree intersections. That is, the
new tree T is defined as:

Ul’liOl’l (Tj, T2) lf T1 N T2 = @

7 TTaian
1 = y uiidil (CuweAreaInt( T, Tz),

CurveArealnt(T>, T1)) otherwise

V. Discussion and Conclusions

For the purposes of simplifying the algorithms, the
primitives in the tree were regarded as unit segments on
some lowest-resolution grid. In fact, they can be line
segments of arbitrary lengths defined with real numbers.
The corresponding algorithms are essentially the same
but more complicated. This is because in this case, it is
often necessary to divide long leaf segments and build
new parts of the tree at the lowest levels. The details of
these algorithms are discussed in [14]. The advantage of
being able to use arbitrary length segments is that any
level in the tree can be regarded as a primitive by using
its line segment {x;, xc). Thus all the operations can be
carried out at any specified resolution.

Strip trees provide a powerful representation of
curves. The representation defines strip segments as
primitives to cover subsets of the line. Organization of
these segments into a tree may be viewed as a particular
case of a general strategy of dividing features up and
covering them with arbitrary shapes. Other attempts in
this class have been tried [1, 3, 4, 15}, but they do not
capture the notions of orientation and resolution nearly
so precisely as strips segments, and do not have the union
and intersection properties.

A relatively new hierarchical way of representing
areas (and curves) is that of quad trees [6, 12]. Quad
trees also exploit a hierarchical structure, but must be
defined with respect to a digital grid of pixels. This

means that, for example,'in order to intersect two quad
trees, both trees must be defined on the same grid. In
contrast, strip trees can be defined in terms of points
which are grid-independent, and therefore can be arbi-
trarily translated and scaled.

Strip trees might seem to require a large overhead in

terms of space. If B is the required space to represent a
curve, then its strip tree will take about 4B space units.
However, it must be remembered that since the under-
lying segments are a linear interpolation of the curve,
not all the points on the curve are represented. This

savings effectively cancels the overhead of the tree in-

dexing scheme and makes the storage required compa-
rable to raster-oriented representations [8, 11].

Current work is directed towards characterizing the
computational complexity of strip tree operations more
precisely.
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