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9 Abstract

10 Visual cognition depends critically on the moment-to-moment orientation of gaze. To change the gaze to a new location in space,

11 that location must be computed and used by the oculomotor system. One of the most common sources of information for this

12 computation is the visual appearance of an object. A crucial question is: How is the appearance information contained in the

13 photometric array is converted into a target position? This paper proposes a such a model that accomplishes this calculation. The

14 model uses iconic scene representations derived from oriented spatiochromatic filters at multiple scales. Visual search for a target

15 object proceeds in a coarse-to-fine fashion with the target’s largest scale filter responses being compared first. Task-relevant target

16 locations are represented as saliency maps which are used to program eye movements. A central feature of the model is that it

17 separates the targeting process, which changes gaze, from the decision process, which extracts information at or near the new gaze

18 point to guide behavior. The model provides a detailed explanation for center-of-gravity saccades that have been observed in many

19 previous experiments. In addition, the model’s targeting performance has been compared with the eye movements of human subjects

20 under identical conditions in natural visual search tasks. The results show good agreement both quantitatively (the search paths are

21 strikingly similar) and qualitatively (the fixations of false targets are comparable). � 2002 Published by Elsevier Science Ltd.
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23 1. Introduction

24 Human vision relies extensively on the ability to make
25 saccadic eye movements to orient the high-acuity foveal
26 region of the eye over targets of interest in a visual scene.
27 However, resolution per se is not the only determinant
28 of gaze location. Starting from Yarbus’ classical work
29 (Yarbus, 1967), many studies have suggested that gaze
30 changes are directed according to the ongoing cognitive
31 demands of the task at hand. The task-specific use of
32 gaze is best understood for reading text (O’Regan, 1990)
33 where the eyes fixate almost every word, sometimes
34 skipping over small function words. In addition, saccade
35 size during reading is modulated according to the spe-
36 cific nature of the pattern recognition task at hand
37 (Kowler & Anton, 1987). Tasks requiring comparison of
38 complex patterns also elicit characteristic saccades back

39and forth between the patterns (Just & Carpenter, 1976).
40In copying of a model block pattern on a board, subjects
41have been shown to employ fixations for accessing cru-
42cial information during different stages of the task
43(Ballard, Hayhoe, & Pelz, 1995; Ballard, Hayhoe, Pook,
44& Rao, 1997). In natural language processing, fixations
45can reflect the instantaneous parsing of a spoken sen-
46tence in the current visual context (Tanenhaus, Spivey-
47Knowlton, Eberhard, & Sedivy, 1995). The role of gaze
48has been studied by in a variety of natural visuomotor
49tasks such as driving, music reading and playing ping-
50pong (Land & Furneaux, 1997). In each case, gaze was
51found to play a central functional role, closely linked to
52the immediate task demands. All these tasks have very
53different kinds of fixation targets, sometimes only de-
54fined in terms of functional needs. For example, in
55driving around a bend, subjects fixate the tangent point
56of the curve to control steering angle, and in ping-pong,
57subjects fixate the bounce point in advance, in order to
58estimate the ball’s trajectory.
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59 The general utility of saccadic eye movements has
60 spurred an extensive effort to characterize their proper-
61 ties. A variety of studies have revealed the importance of
62 task, acuity, and visual features in determining the
63 stimulus for target selection together with accompany-
64 ing metrics of accuracy and fixation duration (e.g.
65 Findlay, 1997; Hooge & Erkelens, 1998; Motter &
66 Belky, 1998; Viviani, 1990; Zelinsky & Sheinberg, 1997).
67 However, much less is known about the underlying
68 computational operations that determine these proper-
69 ties, although some ground-breaking work has been
70 done. Itti and Koch (2000) use the coincidental align-
71 ment of visual features to define a saliency map of
72 possible targets. Moving the gaze to these points suc-
73 cessively has some resemblance to human visual search
74 but there is no model of how specific targets are selected.
75 Tsotsos et al. (1995) use an hierarchical attractor net-
76 work to define interesting targets. Unlike Itti and Koch,
77 Tsotsos’s network can be driven by selected target fea-
78 tures, however the representation cannot define com-
79 pletely general image targets. There also has been no
80 attempt in either of these models to compare their per-
81 formance with human visual search.
82 This paper describes a general model for fixating and
83 remembering appearance-based encodings of targets in
84 natural scenes. The model uses iconic (appearance-
85 based) target representations to search arbitrary visual
86 scenes. Iconic representations are specified by the re-
87 sponses of oriented spatiochromatic filters at multiple
88 scales. This has been demonstrated to be a very robust
89 computational mechanism for target selection in natural
90 scenes (Rao & Ballard, 1997). The computation of target
91 coordinates for a saccade reduces to correlation between
92 a ‘‘top-down’’ iconic target representation and the
93 ‘‘bottom-up’’ iconic scene representations. The model
94 provides a good fit to visual search data where the target
95 is defined predominantly from its appearance. An key
96 feature of the model is that it separates the targeting
97 process, which changes gaze, from the decision process,
98 which uses the information at the new gaze point. The
99 virtue of this separation is that decision-making about
100 the target can be separated from the process of fixating
101 it. Thus there is no additional control structure to make
102 the gaze change contingent on the decision process. If
103 the decision process is slow with respect to the time
104 needed for target selection, then gaze can be moved to
105 the target more accurately. If the decision process is fast,
106 then gaze does not have to be changed at all, as is ob-
107 served in a huge number of studies of attention.

108 2. General purpose iconic representations

109 In many experiments that study saccades, the targets
110 themselves are simple colored shapes that are presented
111 on a blank background. While extensive useful data has

112been collected using this paradigm, this setup does not
113address issues of target selection in natural viewing. In
114natural scenes, the saccadic target may be composed of
115complex photometric intensity patterns, produced by
116cluttered scenes. In order to move the eyes in this case,
117there must be a mechanism that translates the intensity
118image on the retina into a representation that can be
119used by the oculomotor system. Such a mechanism must
120meet at least the following three criteria:

1211. Generality: Any proposed mechanism for targeting
122parts of an image must have broad generality since
123saccadic targets can vary greatly according to the re-
124quirements of the current task.
1252. Speed: Targets must be computed quickly in order to
126model observed human performance. Using millisec-
127ond neural circuitry, the targets for the next fixation
128need to be computed in approximately 80–100 ms, al-
129lowing barely one pass through the cortex (Oram &
130Perrett, 1992; Thorpe & Imbert, 1989).
1313. Resolution: The computation of the target must use
132spatial scales that are available extrafoveally, since
133it is unlikely that the target is already at the gaze
134point.

135One representation that meets these criteria employs
136low resolution iconic representations of targets and
137scenes that can be extracted directly from the optic ar-
138ray. This allows general portions of a scene to be rep-
139resented in a precategorical format without requiring
140any elaborate segmentation. This is an essential prop-
141erty, since the information required for such complex
142operations is frequently the goal of the eye movement
143itself. The computation of saccadic target coordinates is
144accomplished by correlating the iconic memory of the
145target with the iconic representation of the current optic
146array. A correlation peak indicates the most likely lo-
147cation of the target in the current image, allowing a
148saccade to be executed to that location. We regard the
149notion of ‘‘icon’’ as completely general. The idea is that
150any criterion for a gaze point can be transformed into an
151appearance model which captures how that criterion
152should appear in the scene. Then the resultant appear-
153ance image, or icon, is used as a correlation template.
154It would be prohibitively expensive to encode icons
155literally as gray-level images, since the memory needed
156would then scale with the size and number of icons. A
157more efficient alternative is to encode the icons as their
158responses to a set of spatiochromatic basis functions, or
159spatial filters (Itti & Koch, 2000; Poetzsch, Krueger, &
160Von der Malsburg, 1996; Weber & Malik, 1995). One
161motivation for this is that it approximates the trans-
162formations imposed by the receptive fields of striate
163cortical cells. Another motivation is the psychophysical
164evidence of suggesting that the human visual system uses
165such channels (Graham, 1989; Wilson & Wikinson,
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166 1997). The particular filters we use are the steerable fil-
167 ters, so-called because the responses of these filters at
168 any given orientation can be used to produce the re-
169 sponses at any other location by interpolation formulae.
170 A local image patch can be characterized using a zeroth
171 order Gaussian G0 and nine of its oriented derivatives
172 (Fig. 1) as follows (Freeman & Adelson, 1991):

Ghn
n ; n ¼ 1; 2; 3; hn ¼ 0; . . . ;mp=ðnþ 1Þ;
m ¼ 1; . . . ; n ð1Þ

174 where n denotes the order of the filter and hn refers to the
175 preferred orientation of the filter. The response of an

176 image patch I centered at ðx0; y0Þ to a particular basis
177 filter Ghj

i can be obtained by convolving the image patch
178 with the filter:

ri;jðx0; y0Þ ¼
Z Z

Ghj
i ðx0 � x; y0 � yÞIðx; yÞdxdy ð2Þ

180 The iconic representation for the local image patch
181 centered at ðx0; y0Þ is formed by combining into a high-
182 dimensional vector the responses from the 10 basis filters
183 above at different scales

rðx0; y0Þ ¼ ½ri;j;sðx0; y0Þ� ð3Þ

185 where i ¼ 0; 1; 2; 3 denotes the order of the filter,
186 j ¼ 1; . . . ; iþ 1 denotes the different filters per order,
187 and s ¼ smin; . . . ; smax denotes the different scales of the
188 filters. For computational efficiency, a Gaussian pyra-
189 mid representation of the image can also be used to
190 generate multi-scale responses from a set of basis filter
191 kernels at a fixed scale. This strategy was used in the
192 visual search simulations. As an example, Fig. 2 shows
193 the filter-based responses at a given location in a clut-
194 tered scene for filters G1 and G2 and five spatial scales.
195 The filter response vector at every image location in

196general provides an almost unique representation of the
197local image region surrounding that location (Rao &
198Ballard, 1996).
199The model search simulations used gray scale stimuli,
200with three spatial scales and nine filters per scale for a
201total of 27 measurements per image location. The scales
202used in our tests range from approximately 1–6 cycles
203per degree, well within the limits of human spatial res-
204olution at the eccentricities involved in the experiments
205described here. The basis functions described above
206were picked a priori, but very similar functions can be
207learned from samples of natural images (Ballard et al.,
2081997; Barrow, 1987; Bell & Sejnowski, 1997; Hancock et
209al., 1992; Olshausen & Field, 1996).
210The use of multiple scales is crucial to the visual
211search model. In particular, the larger the number of
212scales, the greater the perspicuity of the representation
213as depicted in Fig. 3, which shows the frequency distri-
214bution of correlations between all points in the dining
215table image (Fig. 8(d)) and a fixed target point in the
216same image. The distribution on the left shows how
217using filter responses at a single scale causes ambiguity
218in the iconic scene representations, with as many as 936
219points in the scene having correlations greater than 0.94
220with respect to a fixed target. However, when five scales
221are used, the ambiguity is resolved, and only a single
222point (the target point) correlates greater than 0.94
223(indicated by the arrow for both histograms). The
224greater perspicuity results partly due to the inclusion of
225information from additional scales and partly due to the
226high-dimensionality of the multi-scale vectors. The high-
227dimensionality of the vectors makes them remarkably
228robust to noise due to the orthogonality inherent in high-
229dimensional spaces: given any vector, almost all of the
230other vectors in the space tend to be relatively uncor-
231related with the given vector (Kanerva, 1988; Rao &
232Ballard, 1995a), and almost none are identical with re-
233spect to each other. The result is that the filter response
234vector for a given point is unique for all practical pur-
235poses and can therefore be used to define search targets.
236This property also makes the filter template robust to
237partial occlusions, which commonly occur in natural
238viewing (see Rao & Ballard (1995a) for some examples).
239The representation works best when the gross view-
240point of the scene does not change drastically from
241moment-to-moment. The filter responses are dominated
242by a cosine envelope, so that there is a useful range of
243rotations for which the responses will be effectively in-
244variant. Drastic rotations are handled by storing feature
245vectors from different views (Bulthoff & Edelman, 1992).
246This is consistent with psychophysical evidence that
247shows that subjects represent objects using a small
248number of separate viewpoints. The multi-scale repre-
249sentation also allows interpolation strategies for scale
250invariance (Rao & Ballard, 1995a).

Fig. 1. Spatiochromatic basis functions. Motivation for these basis

functions comes from statistical characterizations of natural image

stimuli (Bell & Sejnowski, 1997; Derrico & Buchsbaum, 1991; Han-

cock, Baddeley, & Smith, 1992; Olshausen & Field, 1996; Rao &

Ballard, 1997). The nine oriented spatial filters at three octave-sepa-

rated scales for each of the three channels in (a) (bright regions denote

positive magnitude while darker regions denote negative magnitude).

At each scale, these nine filters are comprised of two first-order de-

rivatives (G1) of a 2D photometric Gaussian, three second-order de-
rivatives (G2), and four third-order derivatives (G3). Thus, there are
three scales per channel, and nine spatial filters per scale, for a total of

27 filter responses characterizing each location in the image. These 27

spatiochromatic measurements at a given image location can be re-

garded as a photometric signature of the local image region centered at

that location.
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251 To summarize, the representation meets the criterion
252 of generality since any gaze target can be translated in-
253 ternally into a local appearance, which in turn can be
254 expressed in terms of filter responses. The representation
255 can be used quickly since targeting reduces to filter
256 correlations, which we assume can be done in parallel
257 without penalty over the retinal array. Finally the use of
258 multiple scales means that the range of resolutions used
259 can be adjusted to trade-off speed with accuracy as
260 suggested by Geisler and Chou (1995).

2613. Modeling visual search

262Early models of visual search suggested that the
263search process proceeds item-by-item (Treisman, 1988)
264but data showing fast search times for some multiple
265conjunctions were hard to model. More recent models,
266guided by Palmer, Vergese, and Pavel (2000) assume
267that search is area-based, aimed at detecting targets
268within a window centered around the center of gaze
269(Eckstein, 1998; Geisler & Chou, 1995). The size of the
270window is a function of the speed and accuracy required
271of the task, and reflects the signal-to-noise characteris-
272tics of the display (Motter & Belky, 1998). In the latter

Fig. 3. The effect of scale. The distribution of distances (in terms of correlations) between the filter response vector for a selected target point in the

dining table scene (Fig. 7(a)) and all other points in the scene is shown for single scale response vectors (a) and multiple scale vectors (b). Using

responses from multiple scales (five in this case) results in greater perspicuity and a sharper peak near 0.0. The most important feature of these plots

appears at the extreme right hand side. Only one point (the target point) has a correlation greater than 0.94 (demarcated by an arrow) in the multiple

scale case (b) whereas 936 candidate points fall in this category in the single scale case (a).

Fig. 2. Using spatiochromatic filters to extract task-dependent properties. A portion of a cluttered image. The scales at which the filters of Fig. 1 were

applied to the image are shown on the left. Each individual filter, when convolved with the local image intensities near the given image location,

results in one measurement. This example uses the first two filters and five spatial scales for a total of 25 measurements per point. Positive responses

in the vector are represented as an upward bar above the horizontal, negative responses as a downward bar below the horizontal. For reasons of

economy, large scale filters are modeled by using the standard size filter and shrinking the image.
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273 case, the search task can be seen as one of covering the
274 scene while prioritizing likely locations. As a conse-
275 quence the gaze point need not search item-by-item but
276 can delimit large areas.
277 Fig. 4 motivates the model’s use of area-based search
278 in terms of the resolution of the retinal image as re-
279 ported by Hess. For each search task, a resolution needs
280 to be chosen based on signal-to-noise conditions of the
281 display and the spatial properties of the target. The
282 resolution chosen for the search process defines a search
283 window width. Higher signal-to-noise means that the
284 object can be recognized at a lower resolution and hence
285 a bigger search window can be used. A consequence of
286 this choice is that the same resolution is used throughout
287 the search window, even though higher resolution is
288 available. The use of a set resolution in this manner by
289 our model is counterintuitive, as it is more natural to
290 assume that all the available resolution is continuously
291 available. However, the use of resolution as a search
292 parameter is motivated by search experiments that show
293 that other search parameters are set and changed with
294 temporal cost. For example, Sperling (Sperling & Do-
295 sher, 1986) showed that searching displays of two dif-
296 ferent font sizes incurred a cost that suggested the scale
297 had to be set for each size.
298 The visual search model is composed of three separate
299 procedures that each operate largely independent of
300 each other, while at the same time cooperating to solve
301 the current visual search task:

3021. A targeting process (or ‘‘where’’ process) that com-
303putes the next location to be fixated.
3042. A decision process (or ‘‘what’’ process) that matches a
305stored iconic object representation to the current fov-
306eated image region.
3073. An oculomotor process that accepts retinotopic target
308locations from the ‘‘where’’ process and executes a
309saccade to the target location (a method for learning
310this sensorimotor mapping is given in (Rao & Bal-
311lard, 1995b)).

312The model assumes that these processes are running
313concurrently, but that they do not have to be precisely
314coordinated in time. The oculomotor process will con-
315tinue to execute eye movements as long as the decision
316process has not terminated. The current best guess of
317target location is updated as fixations increase the
318available resolution. Although we do not model the
319decision process, a key point is that the decision process
320needs to choose a resolution and window in the same
321way as the search process, but the two resolutions need
322not be the same, since getting the gaze to the target and
323analyzing a property of the target are different compu-
324tations.
325All three processes use a saliency map (Koch & Ull-
326man, 1985) whose value at a given location represents
327the weight determined by multi-scale filter-based corre-
328lation. This weight map has a dual purpose: (1) it allows
329the oculomotor process to fixate target locations with
330high correlations, and (2) its maximum value is used by

Fig. 4. How the model chooses resolutions. Left: Resolution as a function of retinal eccentricity, with a hypothetical search window. Data are

replotted from (Anderson, Mullen, & Hess, 1991). For a given search task our model assumes that the subject chooses a signal-to-noise ratio. That

defines a maximum resolution to be used in the search (A). Given this resolution value, the resolution available on the retina defines a search width

(B). The three frequency scales used by the model are shown at right as filled circles. Right: Separate search windows are used for targeting, which

changes gaze, and decisions, which extract information needed for behavior.
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331 the decision process to judge the presence or absence of
332 the target. The decision process need only use a signal-
333 to-noise criterion to decide whether the correlation peak
334 in the saliency map is high enough so that the target can
335 be assumed to be present. It does not need information
336 on where that measurement came from.
337 The computation of such a saliency map usefully can
338 be described in an oversimplified form as follows. Ob-
339 jects of interest to the current search task are assumed to
340 be represented by a set of memorized filter response
341 vectors rms where s denotes the scale of the filters and m
342 denotes a particular target object in memory. Given a
343 new input image, the targeting process computes the
344 most likely location of the target as follows:

345 1. Compute the saliency map S across all locations ðx; yÞ
346 as

Sðx; yÞ ¼
Xmax
s¼1

jjrsðx; yÞ � rms jj
2 ð4Þ

348 where jjxjj denotes the Euclidean norm of the vector
349 x. In other words, the saliency value at location ðx; yÞ
350 is simply the sum of squared differences between the
351 corresponding components of the filter response
352 vector rs at that image location and the memorized
353 target object vector rms , across all filter scales
354 s ¼ 1; . . . ;max.

355 2. The location for saccadic targeting is the one that is
356 most similar to the target, where similarity is given
357 by Euclidean distance

ðx̂x; ŷyÞ ¼ arg min Sðx; yÞ ð5Þ

360 In this targeting process, a single saliency map is
361 calculated across all filter scales for a given image, and

362the location ðx̂x; ŷyÞ to be foveated is chosen to be the one
363with the highest correlation value with respect to the
364memorized target i.e. the one with the least Sðx; yÞ.
365These computations have been implemented using the
366Datacube MV200 image processor and the Rochester
367dual-camera robot head to perform targeting move-
368ments in real time in natural scenes. The virtue of this
369system is that the Datacube MV200 can compute con-
370volutions at frame rates (30 s�1) and this allows for
371extensive experimentation. Details of the hardware im-
372plementation are given in (Rao & Ballard, 1995a). Figs.
3735 and 6 illustrates the utility of this simple algorithm in a
374search task. Gaze, as denoted by the cross-hairs, is first
375directed to a given scene location as shown in (a). At
376that point the filter responses are memorized. Next, at
377some point in the course of the rest of the behavior, it
378may be desirous to return to the original location from a
379distal point. The targeting algorithm is used to correlate
380the memorized features with the current retinotopic
381image, resulting in a saliency map as shown in (c). Note
382that the coordinate system of the saliency map can also
383be interpreted in terms of a motor error signal. Thus, the
384saliency peak can be used to drive the oculomotor
385command for returning the eyes to the original target
386without involving complex object properties.

3874. Human fixation patterns in appearance-based visual
388search

389Human fixation patterns are more complicated than
390those predicted by the simple search model. In order to
391compare the model’s performance with human search
392and targeting behavior we used the data from eye
393movements in a visual search task described in (Zelin-

Fig. 5. Visual search using spatial filter responses. The simplest form of the visual search model is based on winner-take-all correlation matching. (a)

At a given location, the filter responses are remembered. (b) Next, gaze is transferred to another point. The search problem is to find the original

location in this new view. (c) The saliency map, showing the highest correlation value (brightest point) at the original location. (d) Gaze is transfered

back to that location.
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394 sky, Rao, Hayhoe, & Ballard, 1997). In this experiment,
395 fixation patterns were observed in a simple search par-
396 adigm using natural images of three different scenes: a
397 crib, a workbench and a dining table. Subjects were
398 asked to fixate a point near the bottom of a 12� 	 16�
399 display. They were given a one second presentation of
400 an image containing a single object (e.g. a tool) at the
401 fixation point, defining the search target, on a realistic
402 background (e.g. the workbench). This was followed
403 approximately one second later by a scene that filled the
404 display and contained one, three, or five objects (e.g.
405 various tools) on the same background. Images of the
406 objects were placed on the background on-line at one to
407 five of the six possible equi-eccentric locations (22.5�,
408 45�, 67.5�, 112�, 135�, and 157.5�, each located at an
409 eccentricity of 7�) along an arc centered on the subject’s
410 initial fixation point (see Fig. 7(a)). The objects them-
411 selves subtended about 2� of visual angle. The subjects
412 were asked to indicate (by pressing a button), as quickly
413 and accurately as possible, whether the previewed object

414was among the group of one to five objects in the sub-
415sequent view. Note that the configuration of the objects
416in the experiment was like that shown in the following
417figure (see Fig. 7(a)). For each subject, each of the search
418trials tested a unique configuration of objects and po-
419sitions. The trials were evenly divided into randomly
420interleaved target-present and target-absent conditions
421for set sizes of one, three, and five objects. The back-
422ground objects were always present. Eye movements
423were recorded when the subjects performed this visual
424search task for both color and gray scale images of the
425targets and scenes. The subject’s eye was tracked using a
426Generation-V Dual Purkinje image eye tracker. Note
427that although eye movements were recorded, the subject
428was given no instructions about eye movements except
429to hold fixation before the stimulus presentation. The
430task was described simply to respond whether the target
431was present or absent.
432The typical eye movements elicited in this particular
433task are shown in Fig. 7(a). The surprising result was

Fig. 7. Eye movements in the visual search task. Measurements from actual human data show marked differences from the simple winner-take-all

model: (a) shows the typical pattern of multiple saccades (shown here for two different subjects) elicited during the course of searching for the object

composed of the fork and knife. The initial fixation point is denoted by ‘‘þ’’; (b) depicts a summary of such movements over many target-present
search trials as a function of the six possible locations of a target object on the table.

Fig. 6. Visual search using spatial filter responses. The simplest form of the visual search model is based on winner-take-all correlation matching. (a)

At a given location, the filter responses are remembered. (b) Next, gaze is transfered to another point. The search problem is to find the original

location in this new view. (c) The saliency map, showing the highest correlation value (brightest point) at the original location. (d) Gaze is transfered

back to that location.
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434 that rather than a single movement to the location of the
435 memorized target, several saccades are typical, with each
436 successive saccade moving closer to the target location
437 (Fig. 7(b)). This ‘‘skipping’’ of the saccades in this
438 search paradigm proved to be an extraordinarily robust
439 finding, occurring in almost all 480 trials across all four
440 subjects (Zelinsky et al., 1997).

441 5. Appearance-based search model

442 The simple model described in Section 3 cannot ac-
443 count for the experimentally observed multiple fixations,
444 since its winner-take-all strategy means that only a sin-
445 gle saccade is computed. However, multiple fixations
446 can be fairly easily modeled if the computation of the
447 saliency map is modified in the following three ways:

448 (1) The saliency map computation is made to be
449 slower than the time needed to make an eye movement.
450 This would imply that eye movements are made to tar-
451 get locations as determined by the current state of the
452 saliency map, rather than waiting until the final state has
453 been computed.
454 (2) The saliency map is computed using the larger
455 spatial scale filters first, adding saliency information
456 from successively finer scales as the search process
457 evolves over time. Motivation comes both from the data
458 and several studies that show that lower spatial fre-
459 quencies influence the decision process earlier than
460 higher spatial frequencies (Bichot & Schall, 1999; Gil-
461 christ & Heywood, 1999; McPeek & Keller, 2001;
462 Schyns & Oliva, 1994).
463 (3) The most likely target location is computed using a
464 weighted averaging scheme rather than a pure winner-
465 take-all mechanism. In conjunction with (1) and (2)
466 above, this would imply that early eye movements are
467 directed to ‘‘center-of-gravity’’ locations since only
468 coarse scale information regarding the objects and the
469 background is available at the early stages of the search,
470 thereby biasing the weighted averaging model towards
471 the center of the scene. The motivations for doing this is
472 that it is known that in some circumstances saccades
473 display a ‘‘center-of-gravity’’ property and fall midway
474 between potential targets (Coren & Hoenig, 1972;
475 Findlay, 1982, 1987; He & Kowler, 1989). The move-
476 ment of the first saccade to the center of the image is
477 likely to be a center-of-gravity effect, caused by the
478 presence of many potential targets in the scene.

479 To implement these modifications, the simple winner-
480 take-all model of Section 3 was changed to the follow-
481 ing:

482 1. Set the initial scale of analysis k to the largest scale
483 i.e. k ¼ max; set Sðx; yÞ ¼ 0 for all ðx; yÞ.

4842. Compute the current saliency map across all locations
485ðx; yÞ based on filter responses from the current scale
486k up to the maximum scale

Sðx; yÞ ¼
Xmax
s¼k

jjrsðx; yÞ � rms jj
2 ð6Þ

488As before, Sðx; yÞ is the square of the Euclidean dis-
489tance between the filter response vector rs for image
490location ðx; yÞ and the memorized target response
491vector rms , summed over the scales s ¼ k; . . . ;max.

4923. Find the location for saccadic targeting using the fol-
493lowing weighted population averaging scheme:

ðx̂x; ŷyÞ ¼
X
ðx;yÞ

F ðSðx; yÞÞðx; yÞ ð7Þ

495where F is an interpolation function. For the experi-
496ments, we used

F ðSðx; yÞÞ ¼ expð�Sðx; yÞ=kðkÞÞP
ðx;yÞ expð�Sðx; yÞ=kðkÞÞ ð8Þ

498This choice is attractive since it allows an interpre-
499tation of the search algorithm as computing maxi-
500mum likelihood estimates (cf. Nowlan, 1990) of target
501locations. In the above, kðkÞ is a ‘‘temperature’’ pa-
502rameter that is decreased with k. Decreasing kðkÞ al-
503lows the search to evolve from an initial state where
504all target locations compete equally for a saccade to a
505final state where only a few most likely target loca-
506tions remain.

5074. Move the eye to the location found by step (3). Al-
508though in our simulations we can get away with not
509actually implementing this step, as explained below.
5105. Repeat steps (2), (3) and (4) above with
511k ¼ max � 1;max � 2; . . . until either the target ob-
512ject has been foveated or the number of scales has
513been exhausted. In the former case, the decision pro-
514cess signals the termination of the search process. In
515the latter case, subsequent eye movements are made
516using saliency maps based on all the scales.

517The model has only one parameter, the initial value of
518kð1Þ. The function of kðkÞ is to sharpen the peaks in the
519saliency map. The specific initial value of kð1Þ is de-
520pendent on the values in the filter kernels. With each
521target computation, kðkÞ was decreased by a factor of
522two, thereby allowing the search to evolve from an ini-
523tial coarse resolution state where many target correla-
524tions contribute to a saccade, to a final state where only
525a single most likely target location contributes. The
526values for kðkÞ used were 4, 2 and 1 for k ¼ 1, 2 and 3
527respectively. The exact values are not crucial; the data
528can be fit qualitatively with values of kð1Þ ranging from
5291 to 20. The same values of kðkÞ are used for all scenes
530and target locations within a scene.
531The modified targeting model was implemented on
532our pipeline image processor. Fig. 8 shows the saliency
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533 maps for this image after each of three iterations, with
534 the middle and highest frequencies included in (b) and
535 (c) respectively. Part (d) of the figure shows the sequence
536 of fixations generated by the model for this image, to-
537 gether with those from a human subject. The target
538 (composed of the fork and the knife) was the same in
539 both cases. Thus the coarse-to-fine analysis, together
540 with center-of-gravity effects, can produce the kind of
541 fixation patterns that human subjects generate with this
542 image.
543 In Fig. 8 the saliency map should of course be shifted
544 with gaze. The reason we do not do this is simple ex-
545 pediency. Since we assume the resolution is chosen at the
546 outset of the search, this implies that it is not changed
547 during the target selection, therefore the saliency map
548 cannot take advantage of the resolution of the fovea
549 during the targeting period. The reason for this may not
550 be obvious: if the target is being decided upon by some
551 kind of correlation, the correlation function for foveated
552 targets and non-foveated targets must be adjusted in a
553 way that depends on the eccentricity and target. Oth-
554 erwise a false target near the fovea might appear better
555 than an eccentric true target. This is avoided in the
556 model by selecting a resolution based on the signal-to-
557 noise properties of the display and using that resolution
558 cutoff everywhere in the resultant search window. As a
559 consequence the saliency map is, to a first approxima-

560tion, just shifted by saccades. We do not shift it in our
561figures in order to more easily compare visually the
562temporal effect of sequentially applying the multiple-
563scale filters.

5646. Model–data comparison

565The model’s performance was compared to human
566data taken with 480 search trials pooled over four sub-
567jects. Owing to the nature of the different distractors and
568targets, there is substantial intersubject variability for
569each configuration, nonetheless, on the average, the
570model is remarkably good at approximating the actual
571gaze changes that subjects make. To show this we did
572the following analyses. The first step was to separate the
573sequences that ended up on the target with those that
574went to neighboring targets. Over the 480 trials, many
575records showed eye movements to nearby targets. This
576data is consistent with observations of both Kowler and
577Findlay who showed, particularly in the case when eye
578movements are made immediately upon the onset of the
579display, that a percentage of the movements were to
580false targets. Interestingly, the model also makes eye
581movements to false targets, but generally not to the
582same ones made by the subjects. Thus to compare the
583two sets of data we did the following:

Fig. 8. Illustration of coarse-to-fine saccadic targeting. The saliency map Sðx; yÞ after the inclusion of the largest (a), intermediate (b), and smallest
scale (c) as given by filter response distances to the prototype (the fork and knife); the brightest points are the closest matches; (d) shows the predicted

eye movements as determined by the weighted population averaging scheme. For comparison, saccades from a human subject are given by the dotted

arrows.
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584 (1) We generated an average observer’s path to each of
585 the six locations by averaging the fixations over subjects
586 and target images. The coordinates were weighted by the
587 variance between subjects. This meant that if a subject’s
588 movements were dissimilar to the group, they counted
589 less in the sum. In the small number of cases where there
590 were more than three saccades, only the first three were
591 counted, as by the third saccade the eyes were always
592 very close to one of the targets.
593 (2) The model data was averaged over the different
594 targets for each location. In addition, trials where the
595 final saccade was closer to a false target were excluded
596 from the data and scored as errors. This resulted in 27
597 false targets in 120 model trials. In comparison, if we
598 count human subject trials that had a standard deviation
599 of the subjects’ final gaze points of more than 75% of the
600 intertarget separation difference as errors, then 29 of the
601 records averaged over subjects are counted as false tar-
602 gets.

603 After these steps the results are shown in Fig. 9. The
604 box in each sub-figure represents a 1� region centered on
605 each target location. As is evident there is very good
606 agreement between the model and human data for each
607 location. Furthermore the number of errors made by the
608 model is in very close agreement with the number of
609 errors made by human subjects. It would be perhaps
610 desirable to have the model represent an average or
611 prototypical subject, but we cannot do this as the filters
612 used by the model are probably slightly different than
613 those used by the subjects, as described subsequently.
614 However, we can ask whether the model is representa-

615tive of an individual subject, and there the evidence is
616very encouraging. The average standard deviation for
617the subjects, averaged overall fixations is 1.5� whereas
618the average difference between model and average sub-
619ject fixations is 0.7�. Thus the model behavior is well
620within the profile expected of an individual subject.
621We also examined the saccades to false targets to see if
622there was any systematic bias in terms of location, target
623or scene type. One might well ask why there should be
624any false targets, since the decisions made by the sub-
625jects as to target presence are 100% accurate. We believe
626that the model provides an answer: (a) the decision
627process is separate from the targeting process and thus
628can still function when the ultimate target is eccentric,
629and (b) gaze can be mislocated since the template is
630defined on a neutral background and the background of
631the display bleeds into the larger filters, disturbing the
632correlation computation.
633Table 1 shows this data for target location. The table
634shows the principal difference between the human and
635model data. The model had no difficulty with the crib
636scene, where targets were arrayed on a high contrast
637background, but the human subjects spread their errors
638around all three scenes uniformly. We interpret this to
639mean that the filter model is not identical to that used by
640the human subjects in that the filters are too sensitive to
641contrast and not sensitive enough to the fine structure in
642the targets. Nonetheless, given this caveat, the overall
643pattern of errors among locations is fairly uniform in
644both data sets.
645Additional evidence for the correlation model comes
646from a control experiment that we performed, in which

Fig. 9. Model vs human subjects results. The figure shows the performance of the subjects averaged over subjects and targets to each target location

(see text). The scale is in degrees and the box shows a 1� region centered around each target. Circles and plus symbols mark the fixation points for
human and model data respectively.
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647 the contextual background (e.g. the workbench and
648 other objects) was removed, and the search objects were
649 presented on a uniform background. Table 2 shows the
650 results in the form of initial endpoint error after the first
651 saccade. A striking point of comparison is the difference
652 in error for search scenes containing a single object in
653 the case of a uniform color background (c) vs a non-
654 uniform realistic background (a) and (b). In the former
655 case, the error is reduced by a factor of two for color
656 images and slightly more than that for the gray scale
657 images. This result implies an interference due to the
658 background in the targeting process, as assumed by the
659 model. As one might expect, the effect of the back-
660 ground is less as the number of target objects increases.
661 This experiment is described in more detail in (Zelinsky
662 et al., 1997). It is also of interest to compare the end-
663 point error for color and gray scale images. A small
664 difference is evident after the first saccade. After the
665 second saccade, the endpoint error was a full 1� less in
666 the case of color images, strongly suggesting that color
667 information is being used in the targeting computation.
668 Although the simulation results described in this section
669 modeled human eye movement data from gray scale

670images, the model can be readily extended for saccadic
671targeting based on color information.

6727. Appearance-based search vs spatial memory search

673In both the model and experiment there is no prior
674knowledge of the specific location of the target before
675the presentation of the search array. Thus the only in-
676formation available in both cases is what the target looks
677like, not where it is, and the search strategy is based
678primarily on the object’s appearance. However, it seems
679intuitively likely that information about an object’s lo-
680cation based on previous fixations in a continuously
681present scene, would contribute to the search process.
682Both physiological and psychophysical evidence reveal
683the ability to make saccades purely on the basis of in-
684formation about spatial location (Colby & Goldberg,
6851999). Precuing a location also reduces saccade latencies
686to that location. However, it is not clear what role
687spatial information plays when the stimulus is present
688on the retina and can be chosen on the basis of ap-
689pearance, as is ordinarily the case in natural viewing,
690where subjects have usually made multiple fixations in a
691scene. Evidence from natural tasks such as tapping
692(Epelboim, Steiman, Kowler, & Pizlo, 1997; Land,
693Mennie, & Rusted, 1999) suggest that spatial informa-
694tion does ordinarily play a role in the targeting process.
695Thus adding spatial information to the task should af-
696fect the targeting strategy.
697To test whether spatial information in addition to
698appearance factors would change the search pattern, a
699modification of the visual search task described above
700was run, where subjects were allowed to briefly preview
701the search scene (without knowing the search target) in a
702separate interval just before the search target was pre-
703sented. Subjects were given a one second opportunity to
704preview the search scene prior to the presentation of the
705target. In this period, they were allowed to move their
706gaze freely, allowing them to fixate individual targets.
707The rest of the experiment remained the same as before
708(Zelinsky & Sheinberg, 1997). The subjects held fixation
709on a fixation cross, an icon of the target was then pre-
710sented at the fixation point, followed by the search
711scene. An analysis of the eye movement data revealed
712that single saccades were by far the most common, as
713summarized in Fig. 10. The histograms show the initial
714endpoint error after the first saccade for the original
715search paradigm and the same for the case where sub-
716jects had a one second preview of the scene containing
717the potential targets. For most but not all of the preview
718cases, the initial endpoint error is 1� or less, strongly
719suggesting that subjects use the spatial location of the
720targets as an integral part of the search process. In ad-
721dition, the reaction time for the decision was about 100
722ms faster when the preview was presented, suggesting

Table 1

Number of false targets for the model and human subjects, broken

down by target location and scene

Location Crib Dine Work

Model

1 3 3

2 3 1

3 3

4 2

5 2 3

6 4 3

Subjects

1 3 4 3

2 2 3 1

3 1

4 3 2 2

5 1 1

6 1 2

Table 2

The effect of background on saccade accuracy. Mean endpoint error

(in degrees) across all four subjects after the first saccade as a function

of three different display conditions: (a) color images with a realistic

background, (b) gray scale images with a realistic background, and (c)

color images with a uniform background

Condition Set size

1 3 5

(a) Color 3.2 4.8 5.1

(b) Gray 3.8 5.0 5.2

(c) Uniform background 1.6 4.8 5.1

The errors are shown for set sizes of one, three, and five objects in the

search scene. Note that a uniform background for one target causes

initial saccade accuracy to increase by a factor of two, implying that

the background and other targets are deviating the saccade trajectory.
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723 that the location information facilitated the search
724 process (Zelinsky & Sheinberg, 1997). This might occur
725 if subjects were able to associate locations in the saliency
726 map with the filter response vectors for objects, so that
727 seeing one of these objects would now ‘‘prime’’ the
728 corresponding location in the saliency map. This prim-
729 ing would in turn allow more accurate saccadic targeting
730 in the cases where the target location happened to be
731 inventoried during the preview period. It is important to
732 remember that the subjects’ task was simply to respond
733 with a key press whether the target was present or not.
734 No instructions were made about eye movements except
735 that the subject should fixate the cross before the stim-
736 ulus presentation. Thus it is likely that the observers are
737 integrating the spatial and appearance information as
738 part of a natural search strategy that results in more
739 direct saccades. A way to extend the model to do this is
740 described in (Ballard et al., 1997).

741 8. Discussion

742 The current model shares some mechanisms used by
743 Itti and Koch (2000). They also propose a specific
744 computational implementation of stimulus saliency for
745 general scenes. Itti and Koch also propose filtering the
746 image at different spatial scales. However, their model
747 differs in that separate saliency maps are computed for
748 color, intensity, and orientation. These separate maps

749are linearly combined following iterative lateral com-
750petition within each map. The saliency peak is then
751found using a winner-take-all network. Our model has a
752single saliency map by using oriented spatiochromatic
753filters, but the most important difference is that it uses a
754top-down search template to locate the saliency peak.
755Itti and Koch have no obvious way of searching for
756specific targets that are not contained in their bottom-up
757maps. Furthermore, our model works with unsegmented
758images, and thus avoids the difficult task of deciding
759what constitutes a ‘‘feature.’’ The other important dif-
760ference is our evolution of the signal in time with the
761addition of information at higher spatial frequency
762which is needed to fit the human data. Itti and Koch also
763have no direct comparisons with human data.
764The model used by Tsotsos (Tsotsos et al., 1995) is
765more similar to that described here in that it has a top-
766down target component. However, there is no attempt
767in the Tsotsos model to model the details of eye move-
768ments in a way that could capture the skipping saccades
769seen in human data.
770The model shares some general similarities with the
771visual search model proposed (but not implemented) by
772Findlay and Walker (1999), as well as that of Hooge
773(1996). Their suggestion of a temporal evolution of the
774saliency map takes specific form here. We differ most
775from Findlay and Walker in the representation of tem-
776poral control. In our model there is no explicit temporal
777control of saccades other than the assumption that the

Fig. 10. Comparing preview vs no preview. The graph shows histograms of the endpoint error after the first saccade for the original search paradigm

and the case where subjects had a one second preview of the potential targets. For most but not all of the preview cases the endpoint error is 1� or less,
implying that subjects were able to remember and use the spatial location of the targets. Histograms: vertical axis ¼ frequency of occurrences,
horizontal axis ¼ degrees.
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778 saliency map takes about 400 ms to evolve. We see this
779 as a distinct biological advantage. By decoupling the
780 dependence of the saliency map dynamics with the tar-
781 geting system, they can be simpler and work indepen-
782 dently.
783 Although not a computer model, the model used by
784 Motter and Holsapple (2000) is very relevant to our
785 work. Motter’s studied monkeys search patterns in
786 looking for small conjunction targets of color and shape
787 and found that the data in different displays could be
788 normalized by dividing by the density of search patterns
789 of the correct color. He terms this an adjusted nearest
790 neighbor distance (ANND). The reason this is relevant
791 to our own model is that although not implemented, we
792 conceptualize the search window as being adjusted
793 based on signal-to-noise characteristics. The ANND
794 concept can be seen as making a similar suggestion as
795 dense target arrays can reduce signal-to-noise as shown
796 by Palmer et al. (2000).
797 The model also shares some similarities with that of
798 Wolfe, Cave, and Franzel (1989) and might be seen as an
799 extension that fixes important problems with that
800 model. In the Wolfe and Cave model, top-down priming
801 of features in the saliency map computations can direct
802 the search. Important differences arise in how these
803 computations are carried out. To implement these cal-
804 culations, their model requires that the features be seg-
805 mented from the background, an unrealistic
806 requirement in general. In contrast, our general corre-
807 lation-based targeting method can handle arbitrary
808 targets. More importantly, by separating the eye
809 movements from the decision process, as is done in our
810 model, means that gaze does not have to search every
811 item in a multiple-item search task, but can use area-
812 based calculations. The skipping data provides evidence
813 that this can happen as the eyes move to non-target
814 locations en route to making a decision. Motter’s
815 ANND data and Zelinsky’s data provide further evi-
816 dence for area-based vs item-by-item search.
817 Explaining the observed skipping saccades is done
818 using a coarse-to-fine matching mechanism. The main
819 benefit of a coarse-to-fine strategy is that it allows
820 continuous execution of the decision and oculomotor
821 processes, thereby increasing the probability of an early
822 match. Coarse-to-fine strategies have also enjoyed recent
823 popularity in computer vision with the advent of image
824 pyramids for tasks such as motion detection (Burt,
825 1988). One key question that remains is the source of
826 sequential application of the filters in the human visual
827 system. This will usually result from the variation in
828 resolution of the retina. Since resolution falls off with
829 distance from the fovea, the fine spatial scales could be
830 ineffective during early stages of search simply because
831 the fixation point is distant from the target. However,
832 our model suggests a different explanation. First, the
833 three filters used in the model predictions were centered

834about 1, 3, and 6 cycles per degree. Even the highest of
835these should be visible at an eccentricity of 7� (Anderson
836et al., 1991). To test if the targets were identifiable at this
837eccentricity, in a control experiment observers were re-
838quired to identify the targets while maintaining fixation.
839They were able to do this with negligible errors but used
840much longer reaction times (Zelinsky & Sheinberg,
8411997). In addition, in the experiment where subjects
842were given a preview, many saccades went directly to the
843target, suggesting that resolution did not preclude direct
844targeting. Since the model fits the data well, it suggests
845that the additional effects on targeting from higher
846acuity measurements might be small.
847An additional explanation for the sequential appli-
848cation of the filters is that the cortical machinery is setup
849to match the larger scales first, as target information is
850propagated via cortico-cortical feedback from higher to
851lower areas in the visual cortical hierarchy. If this were
852the case, the observed data would result from the fact
853that the oculomotor system is ready to move before all
854the scales can be matched, and thus the eyes move to the
855current best target position. This interpretation of the
856data is appealing for two reasons. First, it reflects a long
857history of observations on the priority of large scale
858channels in vision (Breitmeyer, 1975; Navon, 1977;
859Parker & Dutch, 1987). A particularly relevant experi-
860ment is that of Schyns and Oliva (1994). This shows that
861in a recognition task with 30 ms exposures, subjects are
862sensitive to the low frequencies in the image whereas
863with 150 ms exposures, subjects respond to the high
864frequency content. Second, in a search experiment sim-
865ilar to ours done by Findlay (1997), when subjects held
866their gaze before before starting the search, the pattern
867of saccades was more direct, suggesting that the target
868location had been refined during the wait. In another
869experiment using pairs of targets, Findlay (1997) found
870evidence that the saccade target signal is initially coar-
871sely localized, and becomes more refined with increasing
872duration. Thus it is not clear whether the coarse-to-fine
873analysis is instantiated in the hardware or whether it is a
874de facto consequence of peripheral resolution fall off.
875Even if peripheral information is not limiting in a par-
876ticular instance, coarse-to-fine analysis may develop as a
877naturally efficient strategy, since foveation will invari-
878ably lead to additional high frequency information for
879the current perceptual decision.
880An alternative explanation for the initial saccade to-
881wards the center of the display is that it is a preplanned
882saccade to facilitate the search by centering fixation
883within the search array. The brief latencies before the
884first saccade support the idea of some kind of prepro-
885gramming. However, it is not likely to be entirely stra-
886tegic (as opposed to a center-of-gravity saccade) because
887the initial fixation is biased toward the target.
888One might suspect that the findings were a product of
889the experimental setup, which had subjects’s heads fixed
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890 in a bite-bar. To check this we repeated the tests using a
891 stereoview head mounted display which contained an
892 eye tracker. We did not analyze the results quantita-
893 tively, but skipping movements were ubiquitous in the
894 data.
895 Normally, a saccade is followed by a 200–300 ms
896 fixation period before the next saccade is generated.
897 Under certain circumstances, express saccades are also
898 observed (Fischer & Boch, 1983; Fischer & Ramsperger,
899 1984; Fischer & Weber, 1993). The fixation periods for
900 express saccades are much shorter, in the range 70–100
901 ms. An analysis of the visual search results (Zelinsky et
902 al., 1997) revealed that the fixation periods of some of
903 the center-of-gravity ‘‘skipping’’ eye movements are
904 much smaller than normal (around 80–130 ms), small
905 enough to qualify them as express saccades. There is a
906 very simple explanation of these short latencies in the
907 context of the proposed model. In a normal fixation,
908 information from that fixation is presumably used in the
909 computation of the next target. This necessitates some
910 setup time for the information to be part of the targeting
911 computation. However, in some cases, the next target
912 may not require information from the current fixation.
913 In such cases, the fixation times can be made much
914 shorter. Such a situation may occur in the case of the
915 ‘‘skipping’’ eye movements, as the targeting is based on
916 a correlation process which is being done sequentially
917 across scales. Of course, the partial correlation results
918 contained in the saliency map have to be ‘‘shifted’’ due
919 to the intermediate eye movements, before being inte-
920 grated, but the eye movement itself contains the infor-
921 mation necessary to perform this shifting. The crucial
922 point is that express saccades may simply reflect a simple
923 relationship between the ongoing computation of the
924 saliency map and the motor command that executes eye
925 movements. When the saliency map computations can
926 be speeded up, the rate of saccades can be made corre-
927 spondingly faster.
928 There exists a vast literature on the role of attention in
929 visual cognition (Duncan & Humphreys, 1992; Krose &
930 Julesz, 1989; Posner & Petersen, 1990; Saarinen & Ju-
931 lesz, 1991; Treisman, 1988; Treismann & Gelade, 1980).
932 Attention has been characterized as covert search based
933 on the metaphor of an attentional spotlight. Some of the
934 search results have suggested that targets can be exam-
935 ined at the rate of about 25 ms per item, with the at-
936 tentional spotlight moving from one location to the next
937 at a speed of about one attentional shift every 30–50 ms
938 (Krose & Julesz, 1989; Saarinen & Julesz, 1991). Models
939 of attention (for example, Niebur & Koch, 1996) have in
940 fact literally modeled this shift of the ‘‘focus of atten-
941 tion’’. The technical advantage of such a strategy is that,
942 since gaze is fixed, retinal coordinates can be used for
943 keeping track of examined locations. However, since
944 signal transmission through visual cortex is on the order
945 of 80–100 ms, performing covert search with an atten-

946tional spotlight while simultaneously obeying this
947stringent time constraint seems a difficult endeavor. An
948alternate explanation provided by the present model is
949that covert search occurs whenever the decision process
950finishes before an eye movement is made. This would
951occur, for example, in the cases where the presence of
952the target in a peripheral location can be judged directly
953from the correlation peaks in the saliency map using a
954signal-to-noise criterion. Under such circumstances, the
955eye movement becomes superfluous and a decision as to
956the presence or absence of the target can be made im-
957mediately without the need for an overt saccade. Such
958an interpretation is especially attractive since it allows a
959single targeting mechanism to parsimoniously account
960for both covert and overt search. It is also consistent
961with a body of evidence suggesting that the ‘‘atten-
962tional’’ (decision-making) and saccadic systems are
963regulated by different but closely related oculomotor
964control systems (Shepherd, Findlay, & Hockey, 1986;
965Groner, 1988; Corbetta, 1999; Findlay, 1997; Motter &
966Belky, 1998; Rizzolatti, 1996). The model has the addi-
967tional advantage of being simpler than models that use
968additional machinery to couple the decision and tar-
969geting systems (e.g. Findlay, 1997).

9709. Conclusion

971A large number of computational models pertaining
972to human visual search and attention have previously
973been proposed (Chapman, 1991; Niebur & Koch, 1996;
974Olshausen, Van Essen, & Anderson, 1993; Tsioutsias &
975Mjolsness, 1996; Tsotsos et al., 1995; Wolfe, 1994).
976Many of these rely on predominantly bottom-up atten-
977tional processes based on various forms of feature maps
978that are used to facilitate search. Some of these models
979were motivated primarily by the need to explain classical
980reaction time results rather than the pattern of eye
981movements observed during visual tasks. Other models
982have explored the use of bottom-up saliency maps and
983have used eye movement scan-paths as sensorimotor
984memories for recognition (Didday & Arbib, 1975; Gie-
985fing, Jan�en, & Mallot, 1991; Rimey & Brown, 1991;
986Rybak, Gusakova, Golovan, Podladchikova, & Shev-
987tsova, submitted for publication; Yamada & Cottrell,
9881995). This paper proposes a new model of the gaze
989targeting process in natural tasks based on observations
990of (Geisler & Chou, 1995; Motter & Holsapple, 2000;
991Palmer et al., 2000) that uses both bottom-up scene
992representations as well as top-down target descriptions
993for gaze control.
994The model has four principal features:

995(1) Instead of ‘‘features’’ that are preselected inde-
996pendently of a task, the model uses iconic templates that
997are task-dependent. As they are expressed in terms of
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998 image filter responses, that are both more general and
999 simpler to use than features. Eye movement models that
1000 are based on a fixed library of features cannot explain
1001 how arbitrary targets are computed.
1002 (2) The model separates the process of changing gaze
1003 from that of deciding on properties of a target. This has
1004 the virtue of allowing the timing relationships between
1005 these two processes to be a natural consequence of the
1006 properties of the scene. This greatly simplifies the con-
1007 trol problem of coordinating eye movements and deci-
1008 sions.
1009 (3) The model specifies that the correlation used to
1010 select targets proceeds in a coarse-to-fine manner that
1011 takes time. If the target is novel and its location must be
1012 determined solely on appearance, this time is longer
1013 than that needed to generate an eye movement, and
1014 consequently effects the gaze trajectory in a predictable
1015 way. This result provides a concrete model of a myriad
1016 of experimentally observed ‘‘center-of-gravity’’ obser-
1017 vations. Since our center of gravity is correlation-based,
1018 it is readily tested experimentally.
1019 (4) The most controversial aspect of the model is its
1020 use of area-based search. The assumption is that the
1021 resolution used to search for the target can be chosen at
1022 the beginning of the search based on the signal-to-noise
1023 properties of the search area. The motivation for being
1024 able to do this is to search large areas at comparable
1025 resolution. The assumption that humans would not
1026 make continuous sue of all the available resolution in
1027 the retinotopic array is counterintuitive. We have argued
1028 that it has precedents in search models, and our exper-
1029 iments show (1) that the model fits the data well and (2)
1030 foveal resolution is not necessary for target location.
1031 However we cannot rule out the use of all the available
1032 resolution by human subjects, so that this question
1033 needs to be settled by further experiments.

1034 The model is constructive, has a specific computa-
1035 tional prescription for target computation, and fits ex-
1036 perimental observations. Its most controversial claim is
1037 that, for the experimental conditions tested, it can use
1038 resolutions much lower than that ultimately available
1039 from the scene to guide gaze changes. As a consequence,
1040 the effect of additional foveal resolution has minimal
1041 effects on the gaze trajectory. We anticipate that situa-
1042 tions could be constructed for which foveal effects would
1043 be seen, but those effects may prove a refinement on the
1044 model presented here.
1045 The main goal of the model was to capture the ex-
1046 ogenous effects of the visual stimulus. There has been no
1047 attempt to model endogenous target specifications e.g.
1048 anti-saccades. However these effects have been modeled
1049 by Kopecz and Schoner (1995) and Trappenberg, Dor-
1050 ris, Munoz, and Klein (2001) in a way that is compatible
1051 with our model.
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