An Application of Reinforcement Learning to
Aerobatic Helicopter Flight

Pieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng
Computer Science Dept.
Stanford University
Stanford, CA 94305

Abstract

Autonomous helicopter flight is widely regarded to be a hjgtfiallenging control
problem. This paper presents the first successful autonsrmomnpletion on a
real RC helicopter of the following four aerobatic manegveiorward flip and
sideways roll at low speed, tail-in funnel, and nose-in fInrOur experimental
results significantly extend the state of the art in autongsmieelicopter flight.
We used the following approach: First we had a pilot fly thédogiter to help
us find a helicopter dynamics model and a reward (cost) fancfThen we used
a reinforcement learning (optimal control) algorithm todfia controller that is
optimized for the resulting model and reward function. Mgpecifically, we used
differential dynamic programming (DDP), an extension of tmear quadratic
regulator (LQR).

1 Introduction

Autonomous helicopter flight represents a challenging rebrgroblem with high-dimensional,
asymmetric, noisy, nonlinear, non-minimum phase dynamitslicopters are widely regarded to
be significantly harder to control than fixed-wing aircrdee, e.g., [14, 20].) At the same time,
helicopters provide unique capabilities, such as in-ptameer and low-speed flight, important for
many applications. The control of autonomous helicopteus provides a challenging and impor-
tant testbed for learning and control algorithms.

In the “upright flight regime” there has recently been coasible progress in autonomous helicopter
flight. For example, Bagnell and Schneider [6] achievedssnstl autonomous hover. Both LaCivita
et al. [13] and Ng et al. [17] achieved sustained autonomawerand accurate flight in regimes
where the helicopter’s orientation is fairly close to uptigRoberts et al. [18] and Saripalli et al. [19]
achieved vision based autonomous hover and landing. Imaginautonomous flight achievements
in other flight regimes have been very limited. Gavriletslef achieved a split-S, a stall turn and
aroll in forward flight. Ng et al. [16] achieved sustainedandmous inverted hover.

The results presented in this paper significantly expandirthieed set of successfully completed
aerobatic maneuvers. In particular, we present the firstessful autonomous completion of the
following four maneuvers: forward flip and axial roll at lowesed, tail-in funnel, and nose-in funnel.
Not only are we first to autonomously complete such a singbestftid roll, our controllers are also
able to continuously repeat the flips and rolls without anyses in between. Thus the controller
has to provide continuous feedbalring the maneuvers, and cannot, for example, use a period of
hovering to correct errors of the first flip before performthg next flip. The number of flips and
rolls and the duration of the funnel trajectories were chdsebe sufficiently large to demonstrate
that the helicopter could continue the maneuvers indefinfisssuming unlimited fuel and battery
endurance). The completed maneuvers are significantly amadkenging than previously completed
maneuvers.

In the (forward)flip, the helicopter rotates 360 degrees forward around itsallagxis (the axis
going from the right to the left of the helicopter). To pretatiitude loss during the maneuver, the
helicopter pushes itself back up by using the (invertedmaior thrust halfway through the flip.
In the (right) axialroll the helicopter rotates 360 degrees around its longitudixial(the axis going
from the back to the front of the helicopter). Similarly teetfiip, the helicopter prevents altitude

loss by pushing itself back up by using the (inverted) matorrthrust halfway through the roll. In
thetail-in funnel the helicopter repeatedly flies a circle sideways with #ilgobinting to the center
of the circle. For the trajectory to be a funnel maneuver,hbi@&opter speed and the circle radius
are chosen such that the helicopter must pitch up steeplyayoirs the circle. Thenose-in funnel
is similar to the tail-in funnel, the difference being thetnose points to the center of the circle
throughout the maneuver.

The remainder of this paper is organized as follows: Se@ierplains how we learn a model from
flight data. The section considers both the problem of ddtaatmn, for which we use an appren-
ticeship learning approach, as well as the problem of esitigpahe model from data. Section 3
explains our control design. We explain differential dymaprogramming as applied to our heli-
copter. We discuss our apprenticeship learning approachdosing the reward function, as well
as other design decisions and lessons learned. Sectiorcdbdssour helicopter platform and our
experimental results. Section 5 concludes the paper. Mafi@ur autonomous helicopter flights
are available at the following webpage:

http://www.cs.stanford.edu/"pabbeel/heli-nips2006

2 Learning aHelicopter Model from Flight Data

2.1 DataCollection

The E3-family of algorithms [12] and its extensions [11, 7, 10] &ve state of the art RL algorithms
for autonomous data collection. They proceed by generdérploration” policies, which try to
visit inaccurately modeled parts of the state space. Umfately, such exploration policies do not
even try to fly the helicopter well, and thus would invarialdgd to crashes. Thus, instead, we use
the apprenticeship learning algorithm proposed in [3],clfproceeds as follows:

1. Collect data from a human pilot flying the desired manesivéth the helicopter. Learn a
model from the data.

2. Find a controller that works in simulation based on theenirmodel.

3. Test the controller on the helicopter. If it works, we aomeé. Otherwise, use the data from
the test flight to learn a new (improved) model and go back ¢p 3t

This procedure has similarities with model-based RL anth ¢ie common approach in control to
first perform system identification and then find a controllsing the resulting model. However,
the key insight from [3] is that this procedure is guaranteedonverge to expert performance in a
polynomial number of iterations. In practice we have neemtarost three iterations. Importantly,
unlike the E® family of algorithms, this procedure never uses explicjilexation policies. We only
have to test controllers that try to fly as well as possibledading to the current simulator).

2.2 Modd Learning

The helicopter state comprises its position y, z), orientation (expressed as a unit quaternion),
velocity (¢, ¢, £) and angular velocityd,, w,,w.). The helicopter is controlled by a 4-dimensional
action spaceu;, us, us, us). By using the cyclic pitche;, us) and tail rotor {:3) controls, the pilot
can rotate the helicopter around each of its main axes and ke helicopter to any orientation.
This allows the pilot to direct the thrust of the main rotorainy particular direction (and thus fly
in any particular direction). By adjusting the collectiviéich angle (control input.4), the pilot can
adjust the thrust generated by the main rotor. For a positillective pitch angle the main rotor will
blow air downward relative to the helicopter. For a negatiséective pitch angle the main rotor
will blow air upward relative to the helicopter. The lattdioas for inverted flight.

Following [1] we learn a model from flight data that prediatsalerations as a function of the current
state and inputs. Accelerations are then integrated taorotita helicopter states over time. The key
idea from [1] is that, after subtracting out the effects @\gty, the forces and moments acting on the
helicopter are independent of position and orientatiorheftielicopter, when expressed in a “body
coordinate frame”, a coordinate frame attached to the béthedelicopter. This observation allows
us to significantly reduce the dimensionality of the modalhéng problem. In particular, we use
the following model:

P = Arfbb+gg+wra
Ay’ + gy + Do + wy,
A2+ b + Cyug + Eo|| (2,47, 2%)||2 + Dy + w.,

<
Il

ISH
I

wg = wag + ClU] + Dl + Wy,
wz = Bywz + Caug + Cogug + Do +w,,,,
W = B.wb+ Csuz + Csqug + D3 4wy, .

By our convention, the superscrigtsndicate that we are using a body coordinate frame with the
x-axis pointing forwards, the y-axis pointing to the rightdathe z-axis pointing down with re-
spect to the helicopter. We note our model explicitly ensathe dependence on the gravity vector
(g%, gz, g%) and has a sparse dependence of the accelerations on thet etogities, angular rates
and inputs. This sparse dependence was obtained by scdfergit models by their simulation ac-
curacy over time intervals of two seconds (similar to [4])e ¥étimate the coefficientts, B., C., D.

and E. from helicopter flight data. First we obtain state and acedilen estimates using a highly
optimized extended Kalman filter, then we use linear regpas® estimate the coefficients. The
termswg, wy, w,, W, , Wy, , W, are zero mean Gaussian random variables, which represent th
perturbations to the accelerations due to noise (or unredd#fects). Their variances are estimated
as the average squared prediction error on the flight datalexted.

The coefficientD, captures sideways acceleration of the helicopter due tstlyenerated by the
tail rotor. The termi||(°, 97, 2°) || models translational lift: the additional lift the helidep gets
when flying at higher speed. Specifically, during hover, tekcbpter’s rotor imparts a downward
velocity on the air above and below it. This downward velo#iduces the effective pitch (angle of
attack) of the rotor blades, causing less lift to be prodiitdd20]. As the helicopter transitions into
faster flight, this region of altered airflow is left behinddatihe blades enter “clean” air. Thus, the
angle of attack is higher and more lift is produced for a gigkoice of the collective controk).
The translational lift term was important for modeling thedibopter dynamics during the funnels.
The coefficientCy4 captures the pitch acceleration due to main rotor thruss ddefficient is non-
zero since (after equipping our helicopter with our sensmkpges) the center of gravity is further
backward than the center of main rotor thrust.

There are two notable differences between our model and ts common previously proposed
models (e.g., [15, 8]): (1) Our model does not include thetiakcoupling between different axes of
rotation. (2) Our model’s state does not include the blaaepihg angles, which are the angles the
rotor blades make with the helicopter body while sweepimgugh the air. Both inertial coupling
and blade flapping have previously been shown to improveracgwf helicopter models for other
RC helicopters. However, extensive attempts to incorpottam into our model have not led to
improved simulation accuracy. We believe the effects oftiakecoupling to be very limited since
the flight regimes considered do not include fast rotati@muad more than one main axis simulta-
neously. We believe that—at the 0.1s time scale used foraenthe blade flapping angles’ effects
are sufficiently well captured by using a first order modehfroyclic inputs to roll and pitch rates.
Such a first order model maps cyclic inputs to angular acatders (rather than the steady state
angular rate), effectively capturing the delay introdubgdhe blades reacting (moving) first before
the helicopter body follows.

3 Controller Design

3.1 Reinforcement Learning Formalism and Differential Dynamic Programming (DDP)

A reinforcement learning problem (or optimal control prtnl) can be described by a Markov deci-
sion process (MDP), which comprises a sextu@leA, T, H, s(0), R). HereS is the set of states;
A is the set of actions or inputg; is the dynamics model, which is a set of probability disttids
{Pt.} (P, (s']s,u) is the probability of being in stat€ at timet + 1 given the state and action at

timet ares andu); H is the horizon or number of time steps of interegf) € S is the initial state;
R: S x A— Ris the reward function.

A policy m = (uo, 11, -, g iS @ tuple of mappings from the set of statgdo the set of ac-
tions .4, one mapping for each time = 0,--- , H. The expected sum of rewards when acting
according to a policyr is given by:E[Zfi0 R(s(t),u(t))|r]. The optimal policyr* for an MDP

(S, A, T, H,s(0), R) is the policy that maximizes the expected sum of rewards.altiqular, the
optimal policy is given byr* = arg max, E[Zf’:0 R(s(t), u(t))|n].

The linear quadratic regulator (LQR) control problem is adal class of MDPs, for which the

optimal policy can be computed efficiently. In LQR the settateas is given bys = R", the set of
actions/inputs is given byl = R?, and the dynamics model is given by:

s(t+1) = A(t)s(t) + Bt)u(t) + w(t),

where for allt = 0,..., H we have thatd(t) € R"*"™, B(t) € R™*? andw(t) is a zero mean
random variable (with finite variance). The reward for beingtates(¢) and taking action/input

u(t) is given by:
—s(t)TQ()s(t) — u(t) " R(tyu(?).

HereQ(t), R(t) are positive semi-definite matrices which parameterize¢hard function. It is
well-known that the optimal policy for the LQR control preloh is a linear feedback controller
which can be efficiently computed using dynamic programmiAtihough the standard formula-
tion presented above assumes the all-zeros state is thedegisble state, the formalism is easily
extended to the task of tracking a desired trajectgty. ., s3;. The standard extension (which we
use) expresses the dynamics and reward function as a forafttbe error state(t) = s(¢) — s*(t)
rather than the actual staté). (See, e.g., [5], for more details on linear quadratic meshjo

Differential dynamic programming (DDP) approximately \s&e8 general continuous state-space
MDPs by iterating the following two steps:

1. Compute a linear approximation to the dynamics and a atiadapproximation to the
reward function around the trajectory obtained when udiegcurrent policy.

2. Compute the optimal policy for the LQR problem obtaine®biep 1 and set the current
policy equal to the optimal policy for the LQR problem.

In our experiments, we have a quadratic reward functiors tha only approximation made in the
first step is the linearization of the dynamics. To bootstiaprocess, we linearized around the
target trajectory in the first iteratioh.

3.2 DDP Design Choices

Error state. We use the following error state= (2° — (2°)*,9° — (3°)*, 2 — (2Y)*, 0 — 2%,y —

y*, 2 — 25 0b — (Wh)*, b — (@h)*, Wb — (wl)*, A,). HereA, is the axis-angle representation of
the rotation that transforms the coordinate frame of thgetamrientation into the coordinate frame
of the actual state. This axis angle representation resutte linearizations being more accurate
approximations of the non-linear model since the axis angpeesentation maps more directly to
the angular rates than naively differencing the quatemarEuler angles.

Cost for change in inputs. Using DDP as thus far explained resulted in unstable cdatsobn
the real helicopter: The controllers tended to rapidly skvibetween low and high values, which
resulted in poor flight performance. Similar to frequencggshg for LQR controllers (see, e.g., [5]),
we added a term to the reward function that penalizes thegehaminputs over consecutive time
steps.

Controller design in two phases. Adding the cost term for the change in inputs worked well for
the funnels. However flips and rolls do require some fastgbain inputs. To still allow aggressive
maneuvering, we split our controller design into two phasethe first phase, we used DDP to find
the open-loop input sequence that would be optimal in theefyee setting. (This can be seen as
a planning phase and is similar to designing a feedforwandrelter in classical control.) In the
second phase, we used DDP to design our actual flight caentrblit we now redefine the inputs as
the deviation from the nominal open-loop input sequenceakang for changes in the new inputs
penalizes only unplanned changes in the control inputs.

Integral control. Due to modeling error and wind, the controllers (so far désd) have non-zero
steady-state error. Each controller generated by DDP igked using linearized dynamics. The
orientation used for linearization greatly affects thaul#sg linear model. As a consequence, the
linear model becomes significantly worse an approximatigh imcreasing orientation error. This
in turn results in the control inputs being less suited fa ¢hrrent state, which in turn results in
larger orientation error, etc. To reduce the steady-steentation errors—similar to the | term

!For the flips and rolls this simple initialization did not work: Due to the target ttajgdeing too far from
feasible, the control policy obtained in the first iteration of DDP ended lipaing a trajectory for which the
linearization is inaccurate. As a consequence, the first iteration’s ¢qalioy (designed for the time-varying
linearized models along the target trajectory) was unstable in the non-thastel and DDP failed to converge.
To get DDP to converge to good policies we slowly changed the modeldroradel in which control is trivial
to the actual model. In particular, we change the model such that theta¢atis times the target state plus
1 — « times the next state according to the true model. By slowly varyirfigpm 0.999 to zero throughout
DDP iterations, the linearizations obtained throughout are good apprtieitaand DDP converges to a good

policy.

in PID control—we augment the state vector with integral ®for the orientation errors. More

specifically, the state vector at timés augmented wit}i:*;lO 0.99="A, (7). Our funnel controllers
performed significantly better with integral control. Fbefflips and rolls the integral control seemed
to matter less.

Factor s affecting control performance. Our simulator included process noise (Gaussian noise on
the accelerations as estimated when learning the model daia), measurement noise (Gaussian
noise on the measurements as estimated from the Kalmanréitetuals), as well as the Kalman
filter and the low-pass filter, which is designed to removehigh-frequency noise from the IMU
measurements.Simulator tests showed that the low-pass filter's latenaythe noise in the state
estimates affect the performance of our controllers mosicdss noise on the other hand did not
seem to affect performance very much.

3.3 Trade-offsin thereward function

Our reward function contained 24 features, consisting ef shuared error state variables, the
squared inputs, the squared change in inputs between adivedimesteps, and the squared integral
of the error state variables. For the reinforcement legraigorithm to find a controller that flies
“well,” it is critical that the correct trade-off betweenebe features is specified. To find the correct
trade-off between the 24 features, we first recorded a gifight. Then we used the apprentice-
ship learning via inverse reinforcement learning algonif2]. The inverse RL algorithm iteratively
provides us with reward weights that result in policies tvémg us closer to the expert. Unfortu-
nately the reward weights generated throughout the iteratof the algorithm are often unsafe to
fly on the helicopter. Thus rather than strictly followingetimverse RL algorithm, we hand-chose
reward weights that (iteratively) bring us closer to theaxiuman pilot by increasing/decreasing
the weights for those features that stood out as mostlyrdiftsfrom the expert (following the phi-
losophy, but not the strict formulation of the inverse RLalthm). The algorithm still converged
in a small number of iterations.

4 Experiments
Videos of all of our maneuvers are available at the URL predith the introduction.

4.1 Experimental Platform

The helicopter used is an XCell Tempest, a competitions@asobatic helicopter (length 54", height
19", weight 13 Ibs), powered by a 0.91-size, two-stroke BagFigure 2 (c) shows a close-up of the
helicopter. We instrumented the helicopter with a Micrastl3DM-GX1 orientation sensor, and a
Novatel RT2 GPS receiver. The Microstrain package contaiagial accelerometers, rate gyros,
and magnetometers. The Novatel RT2 GPS receiver usesrgatndse differential GPS to provide

real-time position estimates with approximately 2cm aacyas long as its antenna is pointing at

the sky To maintain position estimates throughout the flips and rale have used two different se-

tups. Originally, we used a purpose-built cluster of fouBldx LEA-4T GPS receivers/antennas for
velocity sensing. The system provides velocity estimatiéis standard deviation of approximately

1 cm/sec (when stationary) and 10cm/sec (during our agoolvetneuvers). Later, we used three
PointGrey DragonFly2 cameras that track the helicoptenfitee ground. This setup gives us 25cm
accurate position measurements. For extrinsic cametarattin we collect data from the Novatel

RT2 GPS receiver while in view of the cameras. A computer emgifound uses a Kalman filter to

estimate the state from the sensor readings. Our consa@arerate control commands at 10Hz.

4.2 Experimental Results

For each of the maneuvers, the initial model is learned bleciihg data from a human pilot fly-
ing the helicopter. Our sensing setup is significantly lessieate when flying upside-down, so all
data for model learning is collected from upright flight. Tihedel used to design the flip and roll
controllers is estimated from 5 minutes of flight data dunmigich the pilot performs frequency
sweeps on each of the four control inputs (which covers adagimflight regime as possible with-
out having to invert the helicopter). For the funnel corend, we learn a model from the same
frequency sweeps and from our pilot flying the funnels. Ferrtiils and flips the initial model was
sufficiently accurate for control. For the funnels, ouriaditontrollers did not perform as well, and
we performed two iterations of the apprenticeship learailggrithm described in Section 2.1.

2When adding the integrated error in position to the cost we did not exper@mcbenefits. Even worse,
when increasing its weight in the cost function, the resulting controllers wien unstable.

The high frequency noise on the IMU measurements is caused by thaieibof the helicopter. This
vibration is mostly caused by the blades spinning at 25Hz.

421 Flip

In the ideal forward flip, the helicopter rotates 360 degrfeesard around its lateral axis (the axis
going from the right to the left of the helicopter) while sitay in place. The top row of Figure 1 (a)

shows a series of snapshots of our helicopter during an antous flip. In the first frame, the

helicopter is hovering upright autonomously. Subseqyeititches forward, eventually becoming
vertical. At this point, the helicopter does not have thditgttio counter its descent since it can only
produce thrust in the direction of the main rotor. The fliptbmmes until the helicopter is completely
inverted. At this moment, the controller must apply negativllective to regain altitude lost during
the half-flip, while continuing the flip and returning to theright position.

We chose the entries of the cost matriGeand R by hand, spending about an hour to get a controller
that could flip indefinitely in our simulator. The initial ctvoller oscillated in reality whereas our
human piloted flips do not have any oscillation, so (in acano# with the inverse RL procedure, see
Section 3.3) we increased the penalty for changes in inpigisansecutive time steps, resulting in
our final controller.

422 Roll

In the ideal axial roll, the helicopter rotates 360 degreesiad its longitudinal axis (the axis going
from the back to the front of the helicopter) while stayinglace. The bottom row of Figure 1 (b)
shows a series of snapshots of our helicopter during an anitous roll. In the first frame, the
helicopter is hovering upright autonomously. Subsequétiblls to the right, eventually becoming
inverted. When inverted, the helicopter applies negatiiective to regain altitude lost during the
first half of the roll, while continuing the roll and returmjrto the upright position. We used the
same cost matrices as for the flips.

4.2.3 Tail-In Funne

The tail-in funnel maneuver is essentially a medium to higkesl circle flown sideways, with the
tail of the helicopter pointed towards the center of theleir@hroughout, the helicopter is pitched
backwards such that the main rotor thrust not only comperdat gravity, but also provides the
centripetal acceleration to stay in the circle. For a furofeladiusr at velocityv the centripetal
acceleration i /7, so—assuming the main rotor thrust only provides the cestalcceleration
and compensation for gravity—we obtain a pitch arfgte atan(v?/(rg)). The maneuver is named
after the path followed by the length of the helicopter, vatseveeps out a surface similar to that of
an inverted cone (or funnelj.For the funnel reported in this paper, we Wdd= 80 s, = 5 m, and

v = 5.3 m/s (which yields a 30 degree pitch angle during the funt@ure 1 (c) shows an overlay
of snapshots of the helicopter throughout a tail-in funnel.

The defining characteristic of the funnel is repeatabilitite-tbility to pass consistently through the
same points in space after multiple circuits. Our autona@rionnels are significantly more accurate
than funnels flown by expert human pilots. Figure 2 (a) shoammaplete trajectory in (North, East)
coordinates. In figure 2 (b) we superimposed the headingeoh#ticopter on a partial trajectory
(showing the entire trajectory with heading superimposedsga cluttered plot). Our autonomous
funnels have an RMS position error of 1.5m and an RMS headirg ef 15 degrees throughout
the twelve circuits flown. Expert human pilots can maintiis performance at most through one
or two circuits.®

4.2.4 Nose-In Funnel

The nose-in funnel maneuver is very similar to the tail-inrffal maneuver, except that the nose
points to the center of the circle, rather than the tail. Quipaomous nose-in funnel controller
results in highly repeatable trajectories (similar to ta#-ih funnel), and it achieves a level of
performance that is difficult for a human pilot to match. Feg (d) shows an overlay of snapshots
throughout a nose-in funnel.

5 Conclusion

To summarize, we presented our successful DDP-based tdesign for four new aerobatic ma-
neuvers: forward flip, sideways roll (at low speed), taiffimnel, and nose-in funnel. The key
design decisions for the DDP-based controller to fly ourdoglier successfully are the following:

“The maneuver is actually broken into three parts: an accelerating legrthelfeg, and a decelerating leg.
During the accelerating and decelerating legs, the helicopter acceleratgs. 6= 0.8m/s?) along the circle.

SWithout the integral of heading error in the cost function we observatfgigntly larger heading errors
of 20-40 degrees, which resulted in the linearization being so inaccuedtedhtrollers often failed entirely.

Figure 1: (Best viewed in color.) (a) Series of snapshots througimatitonomous flip. (b) Series of snapshots
throughout an autonomous roll. (c) Overlay of snapshots of the hédictiproughout a tail-in funnel. (d)
Overlay of snapshots of the helicopter throughout a nose-in funnet &t for details.)

N oN S B ®

North (m)
North (m)

-4

-8

8 -6-4-2 0 2 4 6 8 8-6-4-2 0 2 4 6 8
East (m) East (m)

CY (b)
Figure 2: (a) Trajectory followed by the helicopter during tail-in funne).Rhrtial tail-in funnel trajectory with
heading marked. (c) Close-up of our helicopter. (See text for dgtails.

We penalized for rapid changes in actions/inputs over aanse time steps. We used apprentice-
ship learning algorithms, which take advantage of an exgmrtonstration, to determine the reward
function and to learn the model. We used a two-phase corggijd: the first phase plans a feasible
trajectory, the second phase designs the actual contrafigagral penalty terms were included to

reduce steady-state error. To the best of our knowledgse thee the most challenging autonomous
flight maneuvers achieved to date.

Acknowledgments

We thank Ben Tse for piloting our helicopter and working oe éhectronics of our helicopter. We
thank Mark Woodward for helping us with the vision system.

References

[1] P. Abbeel, Varun Ganapathi, and Andrew Y. Ng. Learning vehradyamamics with application to model-
ing helicopters. INIPS 18 2006.

[2] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse raicdment learning. IrProc. ICML,
2004.

[3] P. Abbeel and A. Y. Ng. Exploration and apprenticeship learninginforcement learning. [Rroc.
ICML, 2005.

[4] P. Abbeel and A. Y. Ng. Learning first order Markov models dontrol. INNIPS 18 2005.
[5] B. Anderson and J. MooreOptimal Control: Linear Quadratic Method$rentice-Hall, 1989.

[6] J. Bagnell and J. Schneider. Autonomous helicopter control ugimjorcement learning policy search
methods. Innternational Conference on Robotics and Automati&iE, 2001.

[7] Ronen I. Brafman and Moshe Tennenholtz. R-max, a genehahpmial time algorithm for near-optimal
reinforcement learninglournal of Machine Learning Researc002.

[8] V. Gauvrilets, I. Martinos, B. Mettler, and E. Feron. Flight test andwdation results for an autonomous
aerobatic helicopter. IAIAA/IEEE Digital Avionics Systems Conferen2@02.

[9] V. Gauvrilets, B. Mettler, and E. Feron. Human-inspired control lofgic automated maneuvering of
miniature helicopterJournal of Guidance, Control, and Dynamj@&y(5):752—-759, 2004.

[10] S. Kakade, M. Kearns, and J. Langford. Exploration in metritestpaces. IfProc. ICML, 2003.

[11] M. Kearns and D. Koller. Efficient reinforcement learning inttaed MDPs. InProc. IJCAI 1999.

[12] M. Kearns and S. Singh. Near-optimal reinforcement learningoilynomial time. Machine Learning
Journal 2002.

[13] M. La Civita, G. Papageorgiou, W. C. Messner, and T. KanabBesign and flight testing of a high-
bandwidth™., loop shaping controller for a robotic helicoptedournal of Guidance, Control, and
Dynamics 29(2):485-494, March-April 2006.

[14] J. LeishmanPrinciples of Helicopter Aerodynamic€ambridge University Press, 2000.

[15] B. Mettler, M. Tischler, and T. Kanade. System identification of sra&é unmanned helicopter dynam-
ics. InAmerican Helicopter Society, 55th Forud999.

[16] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, Erder, and E. Liang. Autonomous
inverted helicopter flight via reinforcement learning.Ihtil Symposium on Experimental Roboti2§04.

[17] Andrew Y. Ng, H. Jin Kim, Michael Jordan, and Shankar Sastiytonomous helicopter flight via rein-
forcement learning. IINIPS 16 2004.

[18] Jonathan M. Roberts, Peter |. Corke, and Gregg Buskey. dastflight control system for a small
autonomous helicopter. IEEE Int'l Conf. on Robotics and AutomatioP003.

[19] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme. Visually-glideding of an unmanned aerial
vehicle. |[EEE Transactions on Robotics and Autonomous Syst2008.

[20] J. Seddon.Basic Helicopter AerodynamicsAlAA Education Series. America Institute of Aeronautics
and Astronautics, 1990.

