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Predicting the visual world:
silence is golden

Christof Koch and Tomaso Poggio

In predictive coding, only unexpected input features are
signaled to the next stage of processing. Rao and Ballard use
this approach to model extra-classical receptive field effects.

In Arthur Conan Doyle’s story Silver
Blaze, Inspector Gregory from Scotland
Yard asks Sherlock Holmes “Is there any
point to which you would wish to draw
my attention?”, to which Holmes replies
“To the curious incident of the dog in the
night-time.” “The dog did nothing in the
night-time.” “That was the curious inci-
dent.” The point of this well known
exchange is, of course, that the dog did
not bark because the criminal was a per-
son it knew well and expected. Predictive
coding of sensory stimuli in nervous sys-
tems has a similar flavor. It is an encoding
strategy in which predictable features in
the input are suppressed, and only the
unexpected is signaled to the next stage of
processing.

Almost from the start of the informa-
tion age, theorists have argued that such
a coding strategy is very efficient and is
likely to be widely used in natural sensory
systems. In particular, predictive coding
has been invoked to explain the detailed
shape of the spatio-temporal receptive
fields of neurons in the retina and lateral
geniculate nucleus of mammals (for
review, see ref. 1). The visual cortex, how-
ever, with its complex and sometimes
highly nonlinear receptive-field proper-
ties, has proven resistant to these ideas.
No more, though. The study b
in this issue of Nature Neuro-
science provides a detailed account of how
predictive coding can explain extra-clas-
sical receptive-field effects of neurons in
primary visual cortex (V1) and beyond.

The basic idea behind hierarchical pre-
dictive coding is simple. It starts with the
question of how images of natural scenes
should be analyzed. An obvious answer is
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in terms of frequently occurring features,
such as blobs of opposing polarity, orient-
ed edges, curved line segments and so on.
A significant fraction of all images can be
decomposed in terms of these more ele-
mentary features. In other words, a clever
visual system that grew up in the natural
world would not be surprised to find these
features in real images. What is informa-
tive, however, are deviations from the
norm, and in predictive coding, only these
unexpected features are signaled to the next
stage. Applied iteratively, this strategy leads
to the following hierarchical network (see
Fig. 1 in Rao and Ballard): at each stage of
processing, the input from the previous
stage is analyzed in terms of certain learned
features. Each stage signals to the next the
difference between these expected image
features and the actual image, and each
stage sends back to the one below it the

Fig. I. A purely feedfor-
ward model'®  can
account for the available
quantitative data  on
view-tuned inferotempo-
ral cells. The model is an
hierarchical extension of
the classical Hubel and
Wiesel approach  of
building complex cells
from simple cells. It is the /
first demonstration that
hierarchical schemes of @
biological neurons can
account  quantitatively

for both the physiology S
and the psychophysics of
high-level object recogni-

tion. The model consists

of sequences of layers

with linear (blue arrows)

and nonlinear operations

(green arrows), similar

to logical AND and OR

news and views

expected, or predicted, image features. Due
to the convergence of spatially adjacent
modules onto the next higher level, the
receptive fields become progressively larg-
er as one ascends the hierarchy. Learning
of the synaptic weights of the units in each
stage—which can be thought of as their
receptive fields—is unsupervised, that is,
it does not require an external ‘teacher’ that
rewards or punishes individual choices.
Using a two-stage prediction network,
Rao and Ballard demonstrate how units
in their first stage come to show ‘end-
stopping’ (a defining feature of the
‘hypercomplex’ cells of Hubel and
Wiesel). Such a cell responds strongly to
an appropriately oriented bar of a certain
length. As the length of the bar is
increased—extending into an area sur-
rounding the cell’s classical receptive
field—the response decreases until the
cell ceases to fire. End-stopping in these
predictive-coding units results from the
character of the natural images used in
training. As Rao and Ballard show direct-
ly, their training images (natural scenes
inhabited by animals, trees, rocks and so
on) contain edges at different orienta-
tions but at a preferred scale; short bars
are much less likely to occur than longer
ones. During training, units in the sec-
ond stage of the system come to expect
such elongated edges and signal this to
the lower stage. The firing rate of first-
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gates. These two types of operations respectively provide pattern specificity and transforma-
tion invariance. The nonlinear MAX operation, similar to a winner-take-all over all inputs of
the cell, is key to the model’s properties and is quite different from the basically linear sum-
mation of inputs usually assumed for complex cells. (Riesenhuber and Poggio, unpublished).
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stage neurons is the difference between
this expectation and the actual image. As
the bar becomes long enough to intrude
into the cell’s extra-classical receptive
field, the retinal stimulus agrees with the
expected stimulus, and the cell, like
Arthur Conan Doyle’s dog, remains
silent. The authors discuss how predic-
tive coding can explain context-depen-
dent effects found physiologically when
stimuli extend into the extra-classical
receptive field of V1 cells.

Note that the system adapts to the sta-
tistical properties of its training set.
Change these, for instance by exposing it
to nothing but random dot patterns, and
end-stopping should disappear (because
such patterns do not contain edges at a
preferred scale). Ultimately, according to
predictive coding theory, the existence of
end-stopped cells in cortex reflects the way
the visual world is structured (in which
longer edges are more common than
shorter ones).

Predictive coding is a general frame-
work for interpreting information pro-
cessing in complex natural and artificial
systems, and many mechanisms may be
seen in this light. For instance, lateral inhi-
bition very early in the visual system can
be understood as predicting deviation
from uniformity. Lateral inhibition
between motion detectors (or between
cells pooling motion information across
the retina and individual motion detec-
tors) has been postulated to explain the
fly’s and quite possibly the cortex’s detec-
tion of relative motion®. In these and
other cases, although predictive coding
has not been explicitly used, the resulting
models can be framed in such terms.

The architecture of Rao and Ballard’s
neural network, with strong feedforward
and feedback connections, is very remi-
niscent of the widespread reciprocal con-
nections between cortex and thalamus
and between cortical areas (see also ref.
4). Their model predicts that feedback
pathways (whether within or between
cortical areas) are critical to the normal
functioning of the system. Deprived of
this feedback, and therefore of predic-
tions from the higher level, cells respond
promiscuously and lose much of their
selectivity, in agreement with experi-
mental data.

In predictive coding, the common-
place view of sensory neurons as detect-
ing certain ‘trigger’ or ‘preferred’ features
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is turned upside down in favor of a rep-
resentation of objects by the absence of
firing activity. This appears to be at odds
with single-neuron data indicating that
neurons along the ventral pathway in the
macaque monkey, extending from V1 to
inferior temporal cortex, respond with
vigorous activity to ever more complex
objects, including individual faces or
paperclips twisted in just the right way
and seen from a particular viewpoint®.
Training the monkey over weeks and
months usually increases the incidence of
neurons with highly specific receptive
fields®, rather than decreasing their num-
ber as would be expected if cortex were
implementing a predictive coding strate-
gy (because the system would come to
expect these images). In addition, what
about all of the functional imaging data
from humans revealing that particular
cortical areas respond to specific image
classes, such as faces or three-dimension-
al spatial layout’? Is it possible that this
activity is dominated by the firing of
inhibitory feedback cells actively express-
ing an error signal, a discrepancy between
the input expected by this brain area and
the actual image? Alternatively, might
predictive coding apply primarily to the
context-dependent effects found in the
extra-classical surround of neurons?

More familiar are purely feedforward
models in which individual units respond
to specific features in the image with ele-
vated activity®~1%. This framework easily
accommodates a hierarchy of levels con-
taining units of ever-increasing complex-
ity, starting with oriented simple cells in
V1 and ultimately leading to face cells in
IT or place cells in the hippocampus.
Appropriate nonlinear operations at each
processing stage assure that the resulting
units show the observed invariance to
object size, rotation in depth and retinal
location (Fig. 1). In principle, feedfor-
ward and predictive-coding feedback
networks should respond in a qualita-
tively similar manner to select features,
although the former are likely to react
much more rapidly when confronted
with complex images because they
require no multiple iterations to con-
verge. This is compatible with human
data showing that frontal cortex can ana-
lyze complex scenes within an amazing-
ly short 150 milliseconds'!.

The function of top-down connections
within a primarily feedforward architec-

ture could be to modulate responses, as
in selective attention or imagery. Such a
modulatory role of feedback connections
in the adult is compatible with the
absence of any strong loops between two
or more cortical or corticothalamic
areas'?. Another possibility is that feed-
back connections are necessary to enable
the system to learn the appropriate fea-
ture vectors during development or learn-
ing, even though it might not need such
feedback otherwise.

It will be critical to unravel the precise
function of corticocortical feedback pro-
jections and their biophysical mode of
operation, whether linearly subtractive as
in Rao and Ballard’s model or more mod-
ulatory multiplicative (or divisive)'®. This
most likely awaits new pharmacological
or molecular tools that can delicately,
deliberately and transiently inactivate
selected feedback pathways.

In summary, it seems clear that pre-
dictive coding can be used to interpret
certain features of cortical cells, in partic-
ular context-dependent responses. To
what extent such an information coding
strategy might extend to feature selectiv-
ity remains unclear; the brain may use
multiple coding strategies for different
tasks. As usual, only more experiments,
guided by the sort of insights provided by
Rao and Ballard, will help unravel the
complexities and multiple facets of infor-
mation processing in the brain.
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