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Although a large number of neuropsychological and
imaging studies have demonstrated that the medial
temporal lobe (MTL) plays an important role in human
memory, there are few data regarding the activity of
neurons involved in this process. The MTL receives
massive inputs from visual cortical areas, and evidence
over the last decade has consistently shown that MTL
neurons respond selectively to complex visual stimuli.
Here, we focus on how the activity patterns of these cells
might reflect the transformation of visual percepts into
long-term memories. Given the very sparse and abstract
representation of visual information by these neurons,
they could in principle be considered as ‘grandmother
cells’. However, we give several arguments that make
such an extreme interpretation unlikely.

Introduction

The question of how visual information is transformed
across different brain areas, and how it is finally
represented, has occupied neuroscientists for decades.
Consider, for example, the variety of processes triggered
by the single sight of a face — from neurons in the retina
responding to intensity and wavelength, to several areas in
the cortex responding to the direction of gaze of the eyes,
the identity of the face, its emotional expression and so on —
culminating in a conscious percept. Evidence from electro-
physiology and lesion studies in monkeys [1] supports the
existence of a hierarchical organization along the ‘ventral
visual pathway’, extending from primary visual cortex (V1)
to the inferior temporal (IT) cortex. Neurons in V1 code for
local orientations, wavelength and other basic visual fea-
tures, whereas neurons in IT show selectivity for more
complex shapes and even for faces [2—4].

Although it is widely accepted that visual objects are
processed along the ventral pathway, the question of how
this information is represented in the upper stages of the
hierarchy — and made accessible to perceptual, cognitive and
mnemonic processes — remains unclear [3-5]. At least two
alternatives have been proposed. The ‘distributed popu-
lation coding’ view [6-8] assumes that a given percept is
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represented by the activity of very large neuronal ensembles,
in which each neuron is broadly tuned to particular metric
features. Thus, for any one object, a large fraction of the
population will fire. Alternatively, the ‘sparse coding’ view
[5,9] holds that the same percept is represented by much
smaller neuronal ensembles, the members of which respond
in an explicit manner to specific features, objects or concepts.
In such a sparse representation, the majority of neurons are
silent for any one object. Taking this argument to the limit,
neuroscientists considered the hypothesis that a single cell
might respond to one and only one object or person, inde-
pendently of, for example, its angle of gaze, location on the
retina or facial expression. These hypothetical cells are
popularly known as ‘grandmother cells’, as named by Jerry
Lettvin [10,11]. Various versions of this view have been
named ‘pontificial cells’ by Sherrington [12], ‘gnostic cells’
by Konorski [13] and ‘cardinal cells’ by Barlow [5]. Here, we
discuss the evidence for such a representation. We argue
that, although neurons in the human medial temporal lobe
have recently been shown to display a very sparse and
abstract representation [14], this representation is still a
far cry from an extreme Grandmother-cell-like coding.

Are there ‘grandmother’ cells in the medial temporal
lobe?

The IT cortex conveys visual information to the medial
temporal lobe (MTL) [15-17]. The MTL consists of hier-
archical interconnected areas including the amygdala,
hippocampus, entorhinal cortex, parahippocampal cortex
and perirhinal cortex. The hippocampus receives direct
input from the entorhinal cortex, which in turn receives
its major inputs from the perirhinal cortex, the parahip-
pocampal cortex and to a lesser degree directly from the IT
cortex [17]. Clearly, the MTL should not be seen as a
homogeneous structure with a single function. For
example, the differential combination of various regions
in the MTL to declarative memory processes is still a
subject of intense investigation in studies using both neu-
ropsychological observations and neuroimaging tech-
niques in humans, as well as lesion and single cell
recordings in animals (for a review of the hippocampal—
rhinal system, see Ref. [18]). Moreover, consistent evidence
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has demonstrated that the amygdala is implicated in fear-
relevant emotional processing (for reviews see Refs
[19,20]).

Over the last few years, several studies have been
conducted within a clinical setting where electrodes are
implanted in patients with epilepsy to localize the seizure
focus for possible curative resection [21]. The location of
the electrodes is based exclusively on clinical criteria and
the majority of them are usually placed in the MTL, given
the prevalence of epileptic foci there.

Neurons in the human MTL were found to be selectively
activated by conjunctions of gender and facial expression
[21], by pictures of particular categories of objects, such as
animals, faces and houses [22], as well as by the degree of
novelty and familiarity of the images [21,23,24].

Figure 1 shows a single unit in the right anterior
hippocampus that is selective to pictures of the American
actor Steve Carell. The neuron fires with up to 20 Hz in
response to pictures of Carell and is nearly silent during
baseline — with an average activity of 0.04 Hz — or during
presentations of other faces. About 40% of the responsive
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units recorded in the MTL had such a selective and invar-
iant representation [14]. This combination of selectivity
and invariance leads to an explicit representation [25], in
which a single cell can indicate whether the picture of a
particular person is being shown. In fact, a simple linear
classifier applied to the spiking activity of a handful of
simultaneously recorded units predicted which picture the
patient was seeing in each trial far above chance [26].
Although these cells bear some similarities to ‘grand-
mother cells’, several arguments make this interpretation
unlikely. First, it is implausible that there is one and only
one cell responding to a person or concept because the
probability of finding this cell, out of a few hundred million
neurons in the MTL, would be very small. From the
number of responsive units in a recording session, the
number of stimuli presented and the total number of
recorded neurons, a Bayesian probabilistic argument
was used to estimate that out of approximately one billion
MTL neurons, fewer than two million represent a given
percept [27]. This is a far cry from a grandmother-cell-like
representation. This number could be much lower because:
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Figure 1. (a) Responses of a single unit in the right anterior hippocampus that is activated by pictures of the actor Steve Carell. For space reasons we display only 20 out of
57 pictures shown to the patient. There were no statistically significant responses to the other 37 pictures. For each picture, the corresponding raster plots and post-stimulus
time histograms are given. The vertical dashed lines indicate image onset and offset. Pictures were shown for 1 s. (b) The median responses to all pictures. Note that using
the median, instead of the mean, decreases the effect of outliers, such as the burst of spikes in the fourth trial of picture 19. The image numbers correspond to those
displayed in (a). The horizontal line show the mean baseline activity plus five standard deviations, used for defining significant responses. The only significant responses

are to the three pictures of Carell.
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(i) images known to the subjects — which are more likely to
elicit responses than unfamiliar stimuli — were used, and
(i1) neurons with a higher degree of sparseness are very
difficult to detect in our recording sessions lasting, on
average, only ~30 min.

Second, although it was found that the cell of Figure 1
responds only to a particular person, Steve Carell, one
should not discard the possibility that a response to other
persons or objects would have been found if more pictures
had been presented. Indeed, some units fired to more than
one individual in an invariant manner. For example, one
neuron in the hippocampus of another patient was acti-
vated by pictures of Jennifer Aniston and Lisa Kudrow,
both actresses in the TV series ‘Friends’, whereas another
neuron in the parahippocampal cortex fired to pictures of
the Tower of Pisa and the Eiffel Tower, but not to other
landmarks (see Figs S6 and S7 in Ref. [14]). Note that in
these examples the stimuli eliciting responses were clearly
related. Finally, theoretical considerations estimate that
each cell most probably responds to between 50 and 150
distinct individuals or objects [27]. Thus, although these
and other examples [28,29] suggest the existence of a very
sparse representation of information (for a review see Ref.
[9]), this should not be taken to the extreme of assuming
that there is a one-to-one mapping between cells and
objects or concepts.

It will be important to study whether an abstract repres-
entation such as the one hinted at in Figure 1 is also
present in other species or systems, as the recently
reported neurons in rats responding to the concept of a
‘nest’ [30]. In particular, one would expect that such sparse
and abstract cells would be present in neocortical areas for
object recognition, such as the IT cortex. However, it has
been argued that the limited invariance found in the IT
cortex serves to differentiate different views of a given
person or object [31]. It should also be noted that it is
difficult to detect sparse firing neurons. This is particularly
the case when using single electrode recordings with mova-
ble probes that tend to miss sparsely firing cells — which
might be quiet when the electrode passes in their vicinity
unless their ‘trigger’ stimulus is shown — and are more
likely to report neurons with high spontaneous rates and
broadly tuned responses [9,32].

How can such specific and invariant cellular responses
arise in the MTL? Computational work gives one compel-
ling answer. We showed that an unsupervised learning
principle that induces sparse representations [33] natu-
rally leads to the development of units that respond only to
a specific individual or object [34]. In this study, a two-
layered network was exposed many times to 40 different
face images of ten individuals — obtained from a standard
machine-vision database of images [35] — and the synaptic
weights were changed, without any external supervision,
to maximize the sparseness of the representation. That is,
each of the output units was constrained to fire to the
smallest possible number of inputs and, consequently, the
smallest number of units represented each image. After
the network had stabilized, it was tested with a different
set of 40 novel images of the same individuals, and it was
found that most of the units responded uniquely to a single
individual. This finding demonstrates how, in principle, a
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very sparse and invariant neuronal representation could
emerge in the MTL using unsupervised learning.

What are these MTL cells doing?

On the basis of findings in neurological patients with
lesions or animal models with resections of the hippo-
campus and other parts of the temporal lobe, it appears
that the MTL is not necessary for visual recognition. In
particular, the hippocampal-rhinal system is involved in
long-term declarative memory processes, a view supported
by a large set of studies in both humans and animals (see
for example [18,36].

In line with this evidence, it is very likely that the
responses of human MTL cells described in the previous
section link visual (or other forms of) perception to mem-
ory. For example, the cell responding to pictures of Steve
Carell might not be involved in recognizing him (something
that might require processing in the IT cortex and other,
more posterior regions), but might be crucial for the storage
of new long-term memories related to him and to the fact
that the patient viewed his pictures in the clinic. This
interpretation is in agreement with the latency of these
responses, ~250-350 ms after stimulus onset [14]. These
latencies are much longer than those found in neurons in
the IT cortex of the macaque — the final purely visual
processing area — at ~130 ms [37] and also long after rapid
recognition occurs in the human brain, at ~150 ms [38].
Given the direct synaptic connections between the IT
cortex and MTL in the monkey [17], response latencies
of about 150 ms would have been expected for MTL
neurons. This is clearly not the case for our human data
and it is plausible that the additional delay of ~100-
200 ms is due to high-level processing needed to transform
visual percepts into memories to be stored.

It is common to remember abstract concepts and not
details, unless attention is explicitly paid to them (see Box
1). Itis also common to link abstract concepts, like persons
and places, to form associations that can be retrieved in
years to come. Consequently, if the MTL is involved in
consolidation into long-term memory storage, it is plaus-
ible that these neurons might not differentiate all visual
details. Clearly, neurons in other parts of the brain could
represent details, as it is the case for view-sensitive
neurons in the IT cortex [39]. However, abstraction might
indeed be a crucial feature for declarative memory pro-
cesses. As Borges says (see Box 1), without such abstrac-
tion it is not possible to generalize, to learn or even to
think.

The existence of category cells [22], or cells responding
to single individuals [14], is compatible with the view that
they encode aspects of the meaning of any one stimulus
that we might wish to remember. Indeed, a given object can
be relevant as a category (e.g. a dog) or as an individual (my
dog). A similar argument can be made for other types of
category including faces.

These cells might also be involved in learning associ-
ations and relational encoding, in line with previous find-
ings in monkeys [40—44] and humans [45]. In particular,
we mentioned a cell firing to pictures of two actresses
appearing on the same popular TV series, and another
one firing to pictures of both the Tower of Pisa and the
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Box 1. Funes, the memorious
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Box 2. Open questions

In 1944, Jorge Luis Borges (1899-1986) published a compilation of
short stories called ‘Ficciones’. One of these, ‘Funes, the memor-
ious’, recounts the fate of Irineo Funes, who after hitting his head
when falling down from his horse, acquired the amazing talent of
being able to remember absolutely everything. In this story, Borges
gives us an extraordinary perspective of concepts like memory,
invariance and learning. He writes:

‘He was, let us not forget, almost incapable of general, platonic
ideas. It was not only difficult for him to understand that the generic
term dog embraced so many unlike specimens of differing sizes and
different forms; he was disturbed by the fact that a dog at three-
fourteen (seen in profile) should have the same name as the dog at
three-fifteen (seen from the front). His own face in the mirror, his
own hands, surprised him on every occasion.’

‘Without effort, he had learned English, French, Portuguese, Latin.
| suspect, nevertheless, that he was not very capable of thought. To
think is to forget a difference, to generalize, to abstract. In the overly
replete world of Funes there were nothing but details, almost
contiguous details.’

As compellingly illustrated by Borges’ short story, it might be
detrimental to remember every single detail. This fits nicely with the
finding of ‘abstract’ neurons in the human MTL, given the role of
this area in memory consolidation [18]. There are several other
advantages of such a sparse and invariant coding. First, it gives an
explicit representation [25,26], in which the firing of these neurons
carries a large amount of information because they represent the
end product of many previous computations. This facilitates the
readout by simple decoding algorithms [26] or by neurons in other
areas. Second, sparse codes are energy efficient [46,47], because a
relatively small number of neurons should be active to signal a
percept. Third, sparse codes allow a large storage capacity in
associative neural networks by avoiding interference between
different memories [48-50]. Such a reduced interference due to
sparseness has also been shown to be important for rapid learning
in a network model of birdsong [51]. Finally, in contrast to extreme
‘Grandmother cell’ coding schemes, sparse representations have
relatively large storage capacity, as well as tolerance to degrada-
tions of the network and noise in the inputs [49].

Eiffel Tower. This raises the possibility that MTL cells
provide the substrate for such high-level associations.

Conclusions

MTL neurons are situated at the juncture of transform-
ation of percepts into constructs that can be consciously
recollected. These cells respond to percepts rather than to
the detailed information falling on the retina. Thus, their
activity reflects the full transformation that visual infor-
mation undergoes through the ventral pathway. A crucial
aspect of this transformation is the complementary de-
velopment of both selectivity and invariance. The evidence
presented here, obtained from recordings of single-neuron
activity in humans, suggests that a subset of MTL neurons
possesses a striking invariant representation for con-
sciously perceived objects, responding to abstract concepts
rather than more basic metric details. This representation
is sparse, in the sense that responsive neurons fire only to
very few stimuli (and are mostly silent except for their
preferred stimuli), but it is far from a Grandmother-cell
representation. The fact that the MTL represents con-
scious abstract information in such a sparse and invariant
way is consistent with its prominent role in the consolida-
tion of long-term semantic memories. Furthermore, it is
possible that these cells are involved in learning associ-
ations, a subject ripe for further investigation (see Box 2).
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Is the tuning of MTL cells stable or is there a continuous

rearranging of the preferred stimuli of the cell?

e How many cells encode any one percept and, conversely, to how
many different objects or individuals does a cell respond?

e Do MTL cells have the same type of response for other sensory
modalities?

e How are MTL cells involved in learning associations?

How are MTL cells involved in free recall or the spontaneous

emergence of recollection in the human mind?

Although the MTL receives direct inputs from the IT cortex, there

is a very long delay between the neuronal responses in the IT

cortex (at ~130 ms) and those in the MTL (at ~300 ms). What is

happening between 130 ms and 300 ms?

e Are the sparse and invariant human MTL cells generalized

versions of rodent place cells?
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