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Note: for more on information theory and its applications to theoretical computer science, I rec-
ommend the web pages of the courses by Anup Rao and Mark Braverman on this topic, see http://
www.cs.princeton.edu/courses/archive/fall11/cos597D/, https://catalyst.uw.edu/workspace/
anuprao/15415/86751. In particular you can see Lecture 1 in Mark’s course and Lecture 3 in
Anup’s course for a lot of the material below.

Entropy If we have a random variable X (always in our case over {0, 1}k for some k) then the
entropy of X, denoted H(X), aims to capture how many bits of information it contains, or
how much uncertainty it has.

For example, if X is uniform over {0, 1}k then H(X) = k. On the other hand, if X = x...x
for random x ∈ {0, 1} (i.e., the same bit repeated k times) then H(X) = 1.

More generally, if X is uniform over a subset S ⊆ {0, 1}k and |S| = 2m then H(X) = m. A
distribution of this form is called a flat distribution, and in many cases one can pretend that
the distribution we deal with is flat without much loss in understanding.

Formal definition The formal definition of entropy for every X ranging on some domain D is

H(X) =
∑
x∈D

Pr[X = x] · log (1/Pr[X = x])

Exercise: H(X) ≤ log |D| with equality iff X is the uniform distribution over D.

Entropy and independence Suppose we have two (possibly correlated) random variables X,Y
ranging over {0, 1}k. What can we say about H(XY ) where XY is the variable over {0, 1}2k
obtained by concatenating X and Y .

Assume the flat case, so X is uniform over SX and Y is uniform over SY .

Clearly, XY is contained in SX × SY and so by the exercise

H(XY ) ≤ log(|SX | · |SY |) = H(X) + H(Y )

The case where equality holds is when X and Y are independent and then XY will be uniform
over SX × SY .

The other extreme case is when X = Y (i.e. X and Y are perfectly correlated), in which case
we’ll have

H(XY ) = H(X)
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Mutual information The example above hints that the relation between H(XY ) and H(X) +
H(Y ) captures the amount of dependence between X and Y . This motivates the definition of
mutual information between X and Y (denoted I(X;Y )). This aims to capture the question
of “how many bits about X do you learn from seeing Y ?” (or vice versa- it turns out to be
symmetric). The definition is as follows

I(X;Y ) = H(X) + H(Y )−H(XY )

We see from the examples above that if X and Y are independent then I(X;Y ) = 0, while if
X = Y then I(X;Y ) = k.

The following fact will be useful for us:

Exercise: If X and Y are independent and Z is arbitrary then I(X;Z)+I(Y ;Z) ≤ I(XY ;Z).

This exercise is a bit harder than the one above but the intuition behind this is that if you
can learn m bits about XY from Z, then because X and Y are independent, then it must be
that m′ of those bits come from X and m′′ of them come from Y where m′ + m′′ = m.

Note that this inequality can sometimes be strict as is evidenced by the following example:
X and Y are independent random bits and Z = X ⊕ Y (can you see why the inequality is
strict in this case?).

Conditional quantities Sometimes we’ll need to consider a setting where we condition on the
value of some other random variable W that may be correlated with the others. All the
quantities we consider such as entropy, mutual information, etc.. can be extended to this
case, where the idea is that we pick w at random from W and then considered the other
random variables conditioned on the event W = w.

So, the entropy of X conditioned on W , denoted H(X|W ) is equal to Ew∈WH(Xw) where Xw

is the random variable X conditioned on the event W = w. Sometimes we write X|W = w
for Xw.

The mutual information of X and Y conditioned on W , denoted I(X;Y |W ) is equal to
Ew∈W I(Xw;Yw). By linearity of expectation this equals EwH(Xw)+EwH(Yw)−EwH(XwYw) =
H(X|W ) + H(Y |W )−H(XY |W ).

For example, if X and Y are random bits and W = X ⊕ Y then one can see that X and
W are independent, as well as X and Y . However, if we know that W = w, the variable
XY has only 2 possibilities (the two pairs who XOR to w) and so H(XY |W ) = 1. Thus,
I(XY |W ) = 2 − 1 = 1. In other words, given W , you can learn the bit X from Y and vice
versa.

Clearly, if Y is independent of X then H(Y |X) = H(X). On the other hand if Y = X then
H(Y |X) = 0. So, we see that if X and Y are independent then H(XY ) = H(X) + H(Y ) =
H(X) +H(Y |X), while if X = Y then we have H(XY ) = H(X) = H(X) +H(Y |X). In fact
this equality holds in all other cases as well and is known as the “entropy chain rule”

Exercise: Prove that for all X,Y , H(XY ) = H(X) + H(Y |X).

Distances between distributions When are two random variables X,Y over the same domain
D close to one another? It turns out “closeness’ can be defined in several ways, though for
our purposes they’ll all be equivalent. We let PX , PY ∈ RD be the vectors of probabilities
corresponding to X and Y . That is for every w ∈ D, PX(w) = Pr[X = w] and PY (w) =
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Pr[Y = w]. We say that X and Y are “close” if the vectors PX and PY are close to one
another. Let us now define this more formally:

Statistical/ Total variation distance The total variation (also known as statistical or L1) dis-
tance between X and Y is defined as

∆TV(X,Y ) = 1
2 |PX − PY |1 = 1

2

∑
w∈D
|PX(w)− PY (w)|

(The factor 1/2 will not be significant for any of our discussions; it added for normalization
to ensure that ∆TV(X,Y ) ≤ 1 for all X,Y .)

Hellinger distance The Hellinger distance between X and Y is defined as

∆Hel(X,Y ) = 1
2‖
√
PX −

√
PY ‖2 =

(
1
2

∑
w∈D
|
√

PX(w)−
√

PY (w)|2
)1/2

(Again the 1/2 factor is insignificant and added for normalization)

Note that the vectors
√
PX and

√
PY are unit vectors and so the Hellinger distance is (up to

the 1/2 factor) just their Euclidean distance.

The following is implied by standard properties of the L1 and L2 norms:

Exercise: Prove that both ∆TV and ∆Hel are valid distance functions. That is, they satisfy
symmetry (∆(X,Y ) = ∆(Y,X)), positivity (∆(X,Y ) ≥ 0 with ∆(X,Y ) = 0 iff X = Y ), and
triangle inequality (∆(X,Z) ≤ ∆(X,Y ) + ∆(Y, Z)).

Another useful fact is obtained by the standard relations between the 2 norm and inner
product:

Exercise: ∆Hel(X,Y )2 = 1− 〈
√
PX ,
√
PY 〉 = 1−

∑
w∈D

√
PX(w)PY (w)

Relation between Hellinger and TV distance It turns out that for our purposes, the Hellinger
and TV distance are equivalent— when one is small then so is the other, as is shown by this
exercise

Exercise: 1
2H(X,Y )2 ≤ ∆TV(X,Y ) ≤ 1

2H(X,Y ).

Entropy, independence, distance If two random variables X and Y are close to being indepen-
dent, then intuitively the distribution XY should be close to being the product distribution
X × Y (obtained by taking an independent copy of X and an independent copy of Y ). In
fact, one can show this is true in the following quantitative sense:

Exercise: (harder) ∆Hel(XY,X × Y )2 ≤ I(XY ;X × Y )

Note/hint: the way this is typically proven is by showing that ∆Hel(XY,X×Y )2 ≤ ∆KL(X‖Y ) =
I(XY ;X × Y ) where for ∆KL is the Kullback-Leibler divergence, defined as

∆KL(Z‖W ) =
∑
w∈D

Pr[Z = w] log Pr[Z=w]
Pr[W=w]
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