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Definition There is a function f : {0, 1}n × {0, 1}n → {0, 1}, Alice gets input x ∈ {0, 1}n and
Bob gets input y ∈ {0, 1}n. They exchange messages with one another according to some
pre-coordinated protocol (if we don’t care about constant factors, without loss of generality
the protocol can be that they have k(n) rounds, where in odd rounds Alice sends a bit to
Bob and in even rounds Bob sends a bit to Alice). The last message in the protocol should
be equal to f(x, y).

Define C(f) to be the amount of bits sent by the protocol with minimal communication that
computes f .

Note that C(f) ≤ O(n) for every f .

Running Examples XOR f(x, y) = x1 ⊕ · · · ⊕ xn ⊕ y1 ⊕ · · · ⊕ yn
EQUALITY f(x, y) = 1 iff x = y.

INNER PRODUCT f(x, y) = ⊕n
i=1(xiyi)

DISJOINTNESS f(x, y) = ¬ ∨ni=1 (xiyi)

Motivation, Applications Hits “sweet spot” of simplicity vs. richness. Great many applications.

Equality requires linear communication

Theorem 1. C(EQUALITY ) ≥ n

Proof. Suppose C(EQUALITY ) < n and let Π be a protocol computing this function with
communication at most n − 1 bits. Then, there are inputs x 6= x′ such that Π(x, x) =
Π(x′, x′). We claim that Π(x, x′) = Π(x, x). This would yield a contradiction because
EQUALITY (x, x) = 1 but EQUALITY (x, x′) = 0.

Indeed, let ~m = (m1, ....,mk) be the messages Π(x, x) = Π(x′, x′) (we assume as above w.l.o.g
that Alice sends odd messages and Bob sends even ones). Clearly m1 is also the first message
in Π(x, x′) since its only based on Alice’s input x. Now, ~m = Π(x′, x′) means that on input x′

and after seeing message m1, Bob sends the message m2, and hence m2 is the second message
of Π(x, x′). We can continue this way for all messages.

Application to lower bounds for one tape TM’s Here is one example how communication
complexity results can yield complexity lower bounds. Recall that as far as we know, a 2-
tape Turing machine can solve SAT in Õ(n) time. However, it turns out that the simple 1 tape
TM is much more restricted, and can’t even solve the much lowlier language of Palindromes:

Theorem 2. Let PALIN = {xxR : x ∈ {0, 1}k} (where xR = xk...x1) then any 1-tape TM
M takes Ω(n2) time to solve PALIN .
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Proof. Suppose for the sake of contradiction that there exists such a TM M , and so in
particular it runs in time o(n2) on inputs of the form x0nxR for x ∈ {0, 1}n. For every
x ∈ {0, 1}n and i ∈ [n], let fi(x) the number of steps in the computation that the head of M
touches the n+ ith cell of the tape on input x0nxR (i.e., the location which initially contains
the ith zero). Note that for every x, f1(x) + · · · + fn(x) = o(n2) and so there is some i(x)
such that i(x) = o(n).

Now consider the following protocol for solving the equality function:

On inputs x, x′ the two players will simulate a run of the TM on the input x0x′R.

• Alice computes i(x), fi(x) and sends these 2 log n bits to Bob, Bob computes i(x′), fi(x
′)

and sends to Alice. If the numbers disagree then they output zero.

• They start simulating the machine, with Alice responsible for simulating the machine
when the head is in locations 1...n + i and Bob responsible to simulating it when the
head is in locations i+ n+ 1..... Any time the head moves from the n+ ith position to
the right then Alice sends to Bob the (constant sized) state of the TM so he can proceed
with the simulation. Similarly Bob sends to Alice the state every time the head moves
left into the n+ ith position.

• Their total communication is a constant times fi(x) = fi(x
′) = o(n), and the TM

outputs 1 iff x = x′ hence we get a contradiction.

Rank method Here is another proof that C(EQUALITY ) ≥ Ω(n)

Theorem 3. C(f) ≥ log rank(f), where rank(f) denotes the rank of f when considered as a
2n × 2n matrix over the reals.

Proof. Suppose that C(f) = k. Let ~m is one of the ≤ 2k possible transcripts that can arise
when the output of f is 1. Now let S~m ⊆ {0, 1}n × {0, 1}n be the set of inputs that result
in the transcript ~m. Do the same considerations as before, S~m = X~m × Y~m for some subsets
X~m, Y~m ⊆ {0, 1}n.

Thus, we get that

f =
∑
~m

1X~m
× 1Y~m

showing that rank(f) ≤ 2k.

Other functions As corollaries, we get that C(INNERPRODUCT ) ≥ Ω(n) , C(DISJOINTNESS) ≥
Ω(n).

Log rank conjecture It is actually believed that C(f) ≤ poly(log(rank(f))).

Randomized Communication Complexity A very natural extension of the model allows Alice
and Bob to use randomization. That is, their goal is now to output f(x, y) with probability
at least 0.99 (taken over the coins). Define R(f) as smallest randomized communication
complexity of f .

Question: do our proof extend to this case? Can we showR(EQUALITY ), R(INNERPRODUCT ),
R(DISJOINTNESS) ≥ Ω(n)?
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Yao’s Min Max principle It seems hard to argue about randomized protocols directly, but the
following simple but powerful observation of Yao allows us to talk instead about average-case
hardness for deterministic protocols.

Theorem 4. Let f : {0, 1}n×{0, 1}n → {0, 1} and suppose that there is a distribution D over
{0, 1}n × {0, 1}n such that for every deterministic protocol Π of communication complexity k
it holds that Pr(x,y)∈D[f(x, y) = π(x, y)] ≤ 0.9. Then R(f) ≥ k.

Proof. We can think of a randomized protocol of communication k as a distribution P over
deterministic protocols. So, we know that for every (x, y), the probability for a random
Π ∈ P that Π(x, y) = f(x, y) is at least 0.99. In particular this holds when (x, y) is chosen
from D, but then by an averaging argument this means that there exists some Π such that
Pr(x,y)∈D[f(x, y) = π(x, y)] ≤ 0.99.

Inner Product Here is how we can use this idea to show that the INNER PRODUCT function
requires Ω(n) communication.

Theorem 5. R(INNERPRODUCT ) ≥ Ω(n)

Proof. Let D = Un × Un, and suppose towards a contradiction that there is some Π with
communication k = n/100 that can solve INNERPRODUCT on D with probability 0.99.
Then, by averaging there must exist a transcript ~m such that the probability over D that
Π(x, y) = ~m is at least 2−k and that (setting b to be the last bit of ~m) the probability,
conditioned on Π(x, y) = ~m that INNER− PRODUCT (x, y) = b is at least 0.9.

In other words, we have sets A,B ⊆ 2n such that |A| · |B| ≥ 22n−k but∑
x∈A,y∈B

(−1)INNER−PRODUCT (x,y) ≥ 0.8|A||B|

Now, if we consider the vectors 1A, 1B then we get that 1TAH1B ≥ 0.8 · 22n−k where H is the
2n × 2n matrix such that Hx,y = (−1)INNER−PRODUCT (x,y). But it’s easy to see this matrix
has orthogonal rows each of norm 2n/2, which means that it’s top eigenvalue λ is at most
2n/2. That means that

1TAH1B ≤ λ‖1A‖‖1B‖ ≤ 0.8 · 2n/2 · 2n/2 · 2n/2

or in other words (ignoring the negligible factor 0.8), we get that 2n−k ≤ 3n/2 or k ≥ n/2.

The property we used in this proof about the inner product function is that Disc(INNER−
PRODUCT ) ≤ 2−n/2 where

Disc(f) = max
A,B⊆{0,1}n

2−2n
∑

x∈A,y∈B
(−1)f(x,y)

Can you compute Disc(DISJOINTNESS)? Why do we care about disjointness so much?
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