
Workshop II - Local Search, Primal Dual, Sherali Adams

The workshop will be held on Monday, September 17th. Each student must submit a written solution to 1
problem of their choice at the beginning of class on the day of the workshop. Specify which problem you
chose at the top of your submission. Alternatively, a student may volunteer to present a problem to the class in
the workshop. The workshop will have 3 presenters, each presenting one problem in the order given here. Each
presentation should be about 5 minutes. Register to present on September 12th, upon an announcement from the
TA.

1 Local Optima for Facility Location

Recall the metric uncapacitated facility location problem as discussed in class. In this problem, we have a set F of
facilities and a set D of clients. There is a facility cost fi ∈ R+ for every i ∈ F . Moreover, for every i, j ∈ F ∪D
there is an associated distance cij that satisfies the triangle inequality. The goal is find a set S ⊂ F of facilities and
an assignment of clients to opened facilities σ : D → S such that we minimize∑

i∈S
fi +

∑
j∈D

cj,σ(j)

For a given instance of the facility location problem with optimal solution S∗ and σ∗, define F ∗ =
∑
i∈S∗ fi and

C∗ =
∑
j∈D cj,σ∗(j)

We call a solution S, σ locally optimal if the following “updates” to the solution do not improve the value objective
function:

• Add: add a new facility i to S so that the new solution is S ∪ {i}, reassign all clients as efficiently as possible

• Remove: remove a facility from S, reassign all clients as efficiently as possible

• Swap: remove an old facility from S and add a new facility to S, reassign all clients as efficiently as possible.

1.1 Bound on Assignment Cost

Let S, σ be a locally optimal solution, and let C =
∑
j∈D cj,σ(j). Prove that C ≤ F ∗ + C∗.

Now let F =
∑
j∈D cj,σ(j) and assume that F ≤ F ∗ + 2C∗ (This would take longer to prove, so you don’t need to

do this). Given this fact and what you just proved, suggest a natural “greedy” 3-approximation algorithm for the
facility location problem.

1.2 Finding a Polynomial Time Algorithm.

Explain why the natural greedy algorithm might NOT be polynomial time. Suggest a way to modify the algorithm
so that it is polynomial time with approximation factor 3 + ε for arbitrary ε > 0.

Hint: Have your algorithm only update the solution if there is a move that improves the solution by a constant
factor (say by a factor (1 − δ)). Adjust the argument from problem 1.1 to show that C − |F|δ(F + C) ≤ F ∗ + C∗.
Then, similarly assume (without proof) that we can similarly say F − |F|δ(F +C) ≤ F ∗ + 2C∗. Combine these two
facts and pick δ wisely.
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2 Optimal Primal-Dual Algorithm (Harder)

(This is problem 7.5 from the Williamson and Shmoys textbook) In the minimum cost branching problem we are
given a directed graph G = (V,A), a root vertex r ∈ V , and weights wij ≥ 0 for all (i, j) ∈ A. The goal of the
problem is to find a minimum cost set of arcs F ⊂ A such that for every v ∈ V , there is exactly one directed path
in F from r to v. Use the primal-dual method to give an optimal algorithm to this problem.

Note this problem will require you to formulate your own LP relaxation of the problem, consider its dual, and devise
algorithm based on the dual LP.

3 Proof Complexity and Integrality Gaps for Sherali-Adams (Longer)

NOTE: This problem has many definitions in it, be sure to read all of them carefully in order to understand what
is asked of you.

In the k-XOR problem we are given n boolean variables x1 . . . xn a set of m XOR equations of the form⊕
i∈I

xi = b

Where I ⊂ [n], |I| ≤ k. Let Ij ⊂ [n] for 1 ≤ j ≤ m be the set of variables associated with the j-th XOR equa-
tion. The goal is to find an assignment of values for xi in {0, 1} that maximizes the number of XOR equations satisfied.

The Sherali-Adams hierarchy for the k-XOR problem is a sequence of linear programs indexed by t ∈ N. The t-th
level LP in the hierarchy uses variables XS,α where S ⊂ [n], |S| ≤ t and α ∈ {0, 1}|S|. The variable XS,α can be
thought of as a boolean indicator denoting whether the subset S of variables xi was assigned values α. The linear
program on these variables is defined as:

max

m∑
j=1

∑
α∈{0,1}|Ij |

X(Ij ,α) · 1

⊕
i∈Ij

αi = b


over the constraints:

∀|S| < t, α ∈ {0, 1}|S|, j 6∈ S:

XS∪{j},α◦0 +XS∪{j},α◦1 = XS,α

X∅,∅ = 1

The width-w resolution of a set A of XOR equations is the set of all possible XOR equations that can be obtained
through repeatedly performing the following operation on the current set of XOR equations: for any I, J ⊂ [n] with
|I∆J | ≤ w if

⊕
i∈I xi = b and

⊕
j∈J xj = b′ are both in A, then add

⊕
i∈I∆J xi = b⊕ b′ to A.

The following is a rough statement of an important theorem about resolution:

Theorem (rough): Let k ≥ 3 and consider a randomly selected instance of the k-XOR problem on m equations.
Then for some w = O(n), with probability 1− o(1), the width-w resolution of the set of m equations will not contain
the equation 0 = 1, xi = 0 or xi = 1 for any i.

Consider also the following fact about random k-XOR instances (also roughly stated)

Theorem: Consider a random instance of the k-XOR problem on m equations. Then with probability 1 − o(1) at
most half of the equations can be satisfied simultaneously.

Given these theorems, prove that the t-th level Sherali-Adams LP for the k-XOR problem has an integrality gap of
1/2 for some t = O(n).
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