Workshop III - SDP Workshop

September 19, 2018

The workshop will be held on September 24th. There are three problems and presentations should be at most 20 minutes.

1 Max-2-SAT

Recall that in an instance of Max-2-SAT we have a set of $n\{-1,1\}$ variables, and m constraints of the form

$$
C_{i} \equiv b_{i 1} x_{i 1}+b_{i 2} x_{i 2} \neq-2
$$

where the $x_{i j}$ are variables and the $b_{i j} \in\{-1,1\}$ are signs fixed in the instance. The objective is satisfy as many constraints as possible. The trivial algorithm of choosing a random assignment achieves a $\frac{3}{4}$ approximation. Adapt the approximation algorithm we saw in class for Max-Cut to achieve an α approximation algorithm for some constant $\alpha>0.75$.

2 Unique Games Approximation

Recall that an instance of Unique Label cover consists of a bipartite graph (L, R, E), a finite alphabet of labels Σ, and a set of permutations $\left\{f_{e}: \Sigma \rightarrow \Sigma \mid e \in E\right\}$. A labelling is a function $l: L \cup R \rightarrow \Sigma$. An edge $e=(u, v)$ is satisfied if $f_{e}(l(u))=l(v)$. Our objective is to find an l so as to maximize the fraction of edges satisfied. Give an SDP+rounding based algorithm which given an instance which is $1-\epsilon$ satisfiable (that is some assignment satisfies $1-\epsilon$ fraction of edges) can expect to satisfy $1-\operatorname{poly}(k, 1 / \epsilon)$ fraction of edges, where k is the number of labels $|\Sigma|$.

3 Lovász Sandwich Theorem

Let $G=(V, E)$ be an undirected graph. Let the independence number, $\alpha(G)$, be the size of the largest independent set in G. Let the clique cover number, $\bar{\chi}(G)$, be the size of the smallest partition of vertices of G into disjoint cliques.

We define $\vartheta(G)$ as the optimum of the following semidefinite program:

$$
\begin{array}{ll}
\operatorname{minimize} & k \\
\text { subject to } & \left\langle v_{i}, v_{j}\right\rangle=\frac{-1}{k-1},(i, j) \notin E, \\
& \left\langle v_{i}, v_{i}\right\rangle=1, \forall i \in V
\end{array}
$$

First, explain why the above semidefinite program is a relaxation of the clique cover problem. Conclude that $\vartheta(G) \leq \bar{\chi}(G)$.

Next, show that $\alpha(G) \leq \vartheta(G)$, conclude that $\alpha(G) \leq \vartheta(G) \leq \bar{\chi}(G)$. (Hint: consider an optimal collection of v_{i} for the above SDP.)

