Workshop IV - $\sum \mathrm{um}$ of Squ $\square \mathrm{res}$ Workshop

September 25, 2018

The workshop will be held on October 1st. There are five problems and the approximate time you should spend presenting each problem is designated.

1 Pseudo-distributions (5 minutes)

Recall that we can view the solution returned by d levels of the Sum of Squares hierarchy as a function $\mu:\{0,1\}^{n} \rightarrow \mathbb{R}$ such that there exists a formal "expectation" operator $\underset{\mu}{\widetilde{\mathbb{E}}}$ which acts on functions as follows:

$$
\underset{\mu}{\widetilde{\mathbb{E}}} f=\sum_{x \in\{0,1\}^{n}} \mu(x) f(x)
$$

We say that μ is a degree d pseudo-distribution if the above operator, called a pseudoexpectation, satisfies

$$
\underset{\mu}{\widetilde{\mathbb{E}}} 1=1
$$

and for all polynomials p of degree at most $d / 2$

$$
\underset{\mu}{\widetilde{\mathbb{E}}} p^{2} \geq 0
$$

Show that pseudo-expectation satisfies a version of Cauchy-Schwarz. In particular if μ is a degree d pseudo-distribution show that for polynomials p, q of degree at most $d / 2$,

$$
(\underset{\mu}{\widetilde{\mathbb{E}}} p q)^{2} \leq\left(\underset{\mu}{\widetilde{\mathbb{E}}} p^{2}\right)\left(\underset{\mu}{\widetilde{\mathbb{E}}} q^{2}\right)
$$

23 XOR Lower Bound

Suppose we are given a system of m equations over n variables in $\{0,1\}$ of the following form:

$$
x_{i 1}+x_{i 2}+x_{i 3}=a_{i}(\bmod 2)
$$

where $a_{i} \in\{0,1\}$. In this exercise we will show that for all $\epsilon>0$ there exists such a system of equations such that every assignment $x \in\{0,1\}^{n}$ satisfies at most $1 / 2+\epsilon$ fraction of equations, but the optimal fraction of equations "satisfied" by $\Omega(n)$ levels of the Sum of

Squares hierarchy is 1 .
It will be convenient to view our system of equations as a 3-left-regular bipartite graph $G=(L \cup R, E)$ where there is a vertex in L for each equation, a vertex in R for each variable, and we join each vertex v on the left to the three vertices on the right which correspond to the variables in the equation corresponding to v. Finally, we can write down the $a_{i} \mathrm{~s}$ as a vector $a \in\{0,1\}^{m}$.

First we show that a randomly selected system is with high probability not much more than $1 / 2$ satisfiable.

2.1 Presentation 1 - Soundness (10 minutes)

Fix $\epsilon>0$, and let n be the number of variables. Suppose our system has $m>9 n / \epsilon^{2}$ equations. Show that if we select an $a \in\{0,1\}^{m}$ uniformly at random, with probability $1-o_{n}(1)$ no assignment $x \in\{0,1\}^{n}$ satisfies more that $1 / 2+\epsilon$ fraction of equations.

Let G be a bipartite graph which is left d-regular. For a set of left vertices S we denote its set of neighbors $\Gamma(S)$. Suppose that for any subset S of left vertices of size at most s, that $\Gamma(S) \geq \alpha|S|$. We call such a graph a (d, s, α) expander.

2.2 Presentation 2 - Expansion of Random Instances (10 minutes)

Consider the following probabilistic construction of a system of equations. Independently for each triple x_{i}, x_{j}, x_{k}, we include them together in an equation with probability p / n^{2} where p is some number which depends on ϵ but not n. Show that for some choice of constant $\gamma \in[0,1]$, that a graph sampled in this manner is a $(3, \gamma n, 1.7)$ expander with probability at least 0.9.

The upshot of the previous two exercises is that a randomly chosen set of equations is not very satisfiable, and its induced graph is an expander. Now, we will construct a pseudodistribution μ of degree $d=\gamma n / 10$ which "satisfies" all equations.

Given an equation $x_{i 1}+x_{i 2}+x_{i 3}=a_{i}$ we can encode it as a polynomial $\left(1-2 a_{i}\right)(1-$ $\left.2 x_{i 1}\right)\left(1-2 x_{i 2}\right)\left(1-2 x_{i 3}\right)$, which evaluates to 1 precisely when the equation is satisfied. Let $\chi_{S}=\prod_{i \in S}\left(1-2 x_{i}\right)$ for $S \subset[n]$, and let χ_{\emptyset} be identically 1 . Now, the space of polynomials (with boolean inputs) of degree $\leq d$ is spanned by polynomials $\left\{\chi_{S}:|S| \leq d\right\}$, so to construct a degree d pseudo-distribution μ we need only specify the value of $\underset{\mu}{\widetilde{\mathbb{E}}}$ on these polynomials.

2.3 Presentation 3 - Pseudo-Distribution Construction and Local Consistency (15 minutes)

We will construct the pseudo-distribution μ in the following way. First, we set

$$
\underset{\mu}{\widetilde{\mathbb{E}}} \chi_{\emptyset}=1
$$

Next, since it must satisfy $\left(1-2 a_{i}\right)\left(1-2 x_{i 1}\right)\left(1-2 x_{i 2}\right)\left(1-2 x_{i 3}\right)$ for each equation $x_{i 1}+x_{i 2}+$ $x_{i 3}=a_{i}$, we set

$$
\underset{\mu}{\widetilde{\mathbb{E}}}\left(1-2 x_{i 1}\right)\left(1-2 x_{i 2}\right)\left(1-2 x_{i 3}\right)=\left(1-2 a_{i}\right)
$$

Now, we continue in the following manner as long as possible: Pick a pair of subsets with $|S|,|T| \leq d$ such that $\underset{\mu}{\widetilde{\mathbb{E}}} \chi_{S}$ and $\underset{\mu}{\widetilde{\mathbb{E}}} \chi_{T}$ have been set. If it hasn't been set yet and $|S \triangle T| \leq d$, assign

$$
\underset{\mu}{\widetilde{\mathbb{E}}} \chi_{S \Delta T}=\left(\underset{\mu}{\widetilde{\mathbb{E}}} \chi_{S}\right)\left(\underset{\mu}{\widetilde{\mathbb{E}}} \chi_{T}\right)
$$

Else if the left hand side has been set to a value other than the right hand side this process ends and fails. Finally if we can no longer continue this process, for all unassigned subsets S of size at most d we set

$$
\underset{\mu}{\widetilde{\mathbb{E}}} \chi_{S}=0
$$

Show that if the graph associated with our system of equations is a $(3,10 n, 1.7)$ expander, that the above process never fails.

2.4 Presentation 4 - Pseudo-Distribution is Positive Semidefinite (15 minutes)

The last step is to show that we've constructed μ as a valid pseudo-distribution. In particular prove that for a polynomial p with degree at most $d / 2$,

$$
\underset{\mu}{\widetilde{\mathbb{E}}} p^{2} \geq 0
$$

Conclude that after $\Omega(n)$ rounds of Sum of Squares heirarchy the SDP has an integrality gap of 2. In particular we've shown that Sum of Squares cannot outperform the trivial algorithm of a random assignment in polynomial time.

