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Abstract

An (r, δ, ϵ)-locally decodable code encodes a k-bit message x to an N -bit codeword C(x),
such that for every i ∈ [k], the i-th message bit can be recovered with probability 1 − ϵ, by a
randomized decoding procedure that queries only r bits, even if the codeword C(x) is corrupted
in up to δN locations.

Recently a new class of locally decodable codes, based on families of vectors with restricted
dot products has been discovered. We refer to those codes as Matching Vector (MV) codes.
Several families of (r, δ,Θ(rδ))-locally decodable MV codes have been obtained. While codes
in those families were shorter than codes of earlier generations, they suffered from having large
values of ϵ = Ω(rδ). Codes with constant query complexity could only tolerate tiny amounts of
error, and no MV codes of super-constant number of queries capable of tolerating a constant
fraction of errors were known to exist.

In this paper we develop a new view of matching vector codes and uncover certain similarities
between MV codes and classical Reed Muller codes. Our view allows us to obtain a deeper insight
into power and limitations of MV codes. Specifically,

1. We show that existing families of MV codes can be enhanced to tolerate a nearly 1/8
fraction of errors, independent of the number of queries. Such enhancement comes at a
price of a moderate increase in the number of queries;

2. Our construction yields the first families of matching vector codes of super-constant query
complexity that can tolerate a constant fraction of errors. Our codes are shorter than Reed
Muller LDCs for all values of r ≤ log k/(log log k)c, for some constant c;

3. We show that any MV code encodes messages of length k to codewords of length at
least k2Ω(

√
log k). Therefore MV codes do not improve upon Reed Muller LDCs for r ≥

(log k)Ω(
√
log k).

∗An early version of this work has appeared as an ECCC report [Gop09].
†Research partially supported by NSF grants CCF-0832797 and DMS-0835373.
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1 Introduction

Classical error-correcting codes allow one to encode a k-bit message x into an N -bit codeword C(x),
in such a way that x can still be recovered even if C(x) gets corrupted in a number of coordinates.
The disadvantage of classical error-correction is that one needs to read all or most of the (corrupted)
codeword to recover any information about x. Suppose that one is only interested in recovering one
or a few bits of x. In this case, more efficient schemes are possible allowing one to read only a small
number of code positions. Such schemes are known as Locally Decodable Codes (LDCs). Locally
decodable codes allow reconstruction of an arbitrary bit xi, from looking only at r << N randomly
chosen coordinates of C(x). While initial applications of locally decodable codes have been to data
transmission and storage, they have found applications in other areas such as complexity theory
and cryptography. See the surveys [Yek10, Yek07, Tre04, Gas04] for more information. Below is
a slightly informal definition of LDCs:

An (r, δ, ϵ)-locally decodable code encodes k-bit messages x to N -bit codewords C(x), such that
for every i ∈ [k], the bit xi can be recovered with probability 1 − ϵ, by a randomized decoding
procedure that makes only r queries, even if the codeword C(x) is corrupted in up to δN locations.

We would like to have LDCs that have small values of r,N and ϵ and a large value of δ.
However typically the parameters are not regarded as equally important. In applications of LDCs
to data transmission and storage one wants δ to be a large constant, (ideally close to 1/4), and
the codeword length N to be small. At the same time the exact number of queries r is not very
important provided that it is much smaller than k. Similarly the exact value of ϵ < 1/2 is not
important since one can easily amplify ϵ to be close to 0, by running the decoding procedure few
times and taking a majority vote. In applications of LDCs in cryptography one thinks of δ > 0
and ϵ < 1/2 as constants whose values are of low significance and focuses on the trade-off between
r and N, with emphasis on very small values of r such as r = 3 or r = 4.

1.1 Three generations of locally decodable codes

The notion of locally decodable codes was explicitly discussed in various places in the early 1990s,
most notably in [BFLS91, Sud92, PS94]. Katz and Trevisan [KT00] were the first to provide
a formal definition of LDCs (see also [STV01]) and prove lower bounds on their length. Their
bounds were improved in [GKST02, KdW04] where a tight (exponential) lower bound for the
length of 2-query LDCs was obtained. Further lower bounds on the length of LDCs were obtained
in [WdW05, Woo07, DJK+02, Oba02]. The best lower bounds for the length of r-query LDCs
currently have the form Ω̃

(
n1+1/(⌈r/2⌉−1)

)
[Woo07]. They are very far form matching the best

upper bounds.

One can informally classify the known families of locally decodable codes into three generations
based on the technical ideas that underlie them. The first generation captures codes based on
the idea of (low-degree) multivariate polynomial interpolation. All such codes [BFLS91, KT00,
BIK05, CGKS98, Amb97, Ito99] are (directly or indirectly) based on classical (generalized) Reed
Muller (RM) codes [MS77, vL82]. The code consists of evaluations of low degree polynomials in
Fq[z1, . . . , zn], at all points of Fn

q , for some finite field Fq. The decoder recovers the value of the
unknown polynomial at a point by shooting a line in a random direction and decoding along it using
noisy polynomial interpolation [BF90, Lip90, STV01]. The method behind these constructions is
very general. It yields locally decodable codes of all possible query complexities, (i.e., one can
choose r to be an arbitrary non-decreasing function of k) that tolerate a constant fraction of errors.
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(We say that an r-query code C tolerates δ fraction of errors if C is (r, δ, ϵ)-locally decodable for
some ϵ < 1/2.)

The second generation of LDCs [BIKR02, WY05] combined the earlier ideas of polynomial
interpolation with a clever use of recursion to show that Reed-Muller type codes are not the
shortest possible for constant values of query complexity r ≥ 3. Codes of the second generation are
(r, δ,Θ(rδ))-locally decodable. Thus the fraction of noise handled by these codes decays linearly
with r. No LDCs of the second generation with r = ω(1) and δ = Ω(1) are known to exist.

The latest (third) generation of LDCs was initiated in [Yek08] and developed further in [Rag07,
KY09, Efr09, IS08]. New codes are obtained through an argument involving a mixture of combina-
torial and algebraic ideas, where the key ingredient is a design of a large family of low dimensional
(matching) vectors with constrained dot products. In what follows we refer to LDCs of the third
generation as Matching Vector (MV) codes. Several families of (r, δ,Θ(rδ))-locally decodable MV
codes have been obtained. While codes in those families were dramatically shorter than codes of
earlier generations, similarly to codes of [BIKR02, WY05] they suffered from having large values
of ϵ = Ω(rδ). Codes with constant query complexity could only tolerate tiny amounts of error, and
no MV codes with r = ω(1) capable of tolerating a constant fraction of errors were known to exist.

1.2 Our results

In this work we develop a new view of matching vector codes and uncover certain similarities
between MV codes and classical Reed Muller codes. Our view allows us to obtain a deeper insight
into the power and limitations of MV codes.

1. We show that existing families of MV codes can be enhanced to tolerate a nearly 1/8 frac-
tion of errors, independent of the value of r, at a price of a moderate increase in the number of
queries1. Specifically, for every constant t ≥ 2, we obtain a family of

(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-

locally decodable codes of length essentially identical to the length of the shortest known(
2O(t), δ, 2O(t)δ

)
-LDCs of [Efr09, IS08]. These codes encode messages of length k into code-

words of length exp exp
(
(log k)1/t(log log k)1−1/t

)
.

2. We obtain the first families of matching vector codes of super-constant query complexity that
can tolerate a constant fraction of errors, close to 1/8. Our codes are shorter than Reed Muller
LDCs for all values of r ≤ log k/(log log k)c, for some constant c.

3. We obtain a new family of MV codes, that matches the parameters of RM codes for r =
Θ(log k log log k).

4. The parameters of an MV code are determined by the parameters of the underlying family of
matching vectors. We obtain bounds on the parameters of such families and conclude that any
MV code encodes messages of length k to codewords of length at least k2Ω(

√
log k). Therefore

MV codes do not improve upon Reed Muller locally decodable codes for r ≥ (log k)Ω(
√
log k).

1.3 Our techniques

Our constructions are centered around a new view of MV codes that fleshes out some intrinsic
similarities between MV codes and RM codes. In our view an MV code consists of a linear subspace

1It is interesting to contrast our work with the work of Woodruff [Woo08] who obtained a non-linear transformation
that (in certain circumstances) allows one to reduce LDC codeword length at a price of a loss in the value of δ.
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of polynomials in Fq[z1, . . . , zn], evaluated at all points of Cn
m, where Cm is a certain multiplicative

subgroup of F∗
q . The decoding algorithm is similar to traditional local decoders for RM codes.

The decoder shoots a line in a certain direction and decodes along it. The difference is that the
monomials which are used are not of low-degree, they are chosen according to a matching family
of vectors. (Two collections of vectors U ,V ⊆ Zn

m form a matching family if for every ui ∈ U there
is a unique vi ∈ V such that (ui,vi) = 0, while other dot products (uj ,vi) belong to a small set
S ⊆ Zm \ {0}.) Further, the lines for decoding are multiplicative.

Constructions of locally decodable codes from matching vectors have previously been considered
in [Yek08] and [Rag07, Efr09, IS08]. In this work we show that if the family of matching vectors
underling the MV code is bounded (meaning that dot products between all vectors u ∈ U and v ∈ V
are small in Zm with respect to the natural total ordering); then the restriction of a codeword of the
MV code to a multiplicative line yields an evaluation of a low degree polynomial. Therefore one can
apply existing techniques for noisy polynomial interpolation in the decoding process and tolerate
a large fraction of errors. We further argue that the currently best known families of matching
vectors (due to Grolmusz [Gro00]) can be turned into bounded, as well as obtain a new bounded
matching family.

We also initiate a systematic study of families of matching vectors and prove upper bounds on
their sizes. For the case when m = p is a prime, our bounds are obtained by using the expansion
of hyperplanes in Zn

p when viewed as a collection of points. This bound beats the known bounds
when the dimension n is small. Our bounds for composites are obtained via reductions to the prime
case. These bounds in turn imply that any matching vector code must stretch messages of length
k to codewords of length k2Ω(

√
log k) for large enough k, regardless of the query complexity.

1.4 Outline

We start section 3 with formal definitions of locally decodable codes and matching families of
vectors. We introduce the concept of a bounded matching family and show how any such family
yields an LDC tolerating a large fraction of errors. In section 4 we present two constructions of
bounded matching families. In section 5 we put the results of sections 3 and 4 together to obtain
new upper bounds on the length of MV codes. In section 6 we obtain a collection of upper bounds
on the size of matching families of vectors. In section 7 we translate the results of section 6 into
lower bounds on the length of MV codes.

2 Notation

We use the following standard mathematical notation:

• [k] = {1, . . . , k};

• Fq is a finite field of q elements. F∗
q is the multiplicative group of Fq;

• For a polynomial f ∈ Fq[z1, . . . , zh] we denote by supp(f) the set of monomials with non zero
coefficients in f , where a monomial ze11 · · · zehh is identified with the integer h-tuple (e1, . . . , eh);

• Zm is the ring of integers modulo an integer m. Z∗
m is the set of invertible elements of Zm;

• d(x,y) denotes the Hamming distance between vectors x and y;
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• (u,v) stands for the dot product of vectors u and v;

• For a vector w ∈ Zn
m and an integer l ∈ [n] let w(l) denote the l-th coordinate of w;

• A D-evaluation of a function f defined over D, is a vector of values of f at all points of D.

• We write exp(x) to denote 2O(x).

3 Matching vector codes: the framework

In this section we formally define locally decodable codes and matching families of vectors. We
review the existing construction of LDCs from matching families, casting it in a new language that
makes explicit certain intrinsic similarity between MV codes and RM codes. We then introduce
the concept of a bounded matching family and show how MV codes based on these families can be
decoded from large amounts of error.

Definition 1 A q-ary code C : Fk
q → FN

q is said to be (r, δ, ϵ)-locally decodable if there exists a
randomized decoding algorithm A such that

1. For all x ∈ Fk
q , i ∈ [k] and y ∈ FN

q such that d(C(x),y) ≤ δN : Pr[Ay(i) = x(i)] ≥ 1 − ϵ,
where the probability is taken over the random coin tosses of the algorithm A.

2. A makes at most r queries to y.

A locally decodable code is called linear if C is a linear transformation over Fq. Our constructions
of locally decodable codes are linear. While our main interest is in binary codes we deal with codes
over larger alphabets as well.

Definition 2 Let S ⊆ Zm \ {0}. We say that subsets U = {u1, . . . ,uk} and V = {v1, . . . ,vk} of
vectors in Zn

m form an S-matching family if the following two conditions are satisfied:

• For all i ∈ [k], (ui,vi) = 0;

• For all i, j ∈ [k] such that i ̸= j, (uj ,vi) ∈ S.

We now show how one can obtain an MV code out of a matching family. We start with some
notation.

• We assume that q is a prime power, m divides q− 1, and denote a subgroup of F∗
q of order m

by Cm;

• We fix some generator g of Cm;

• For w ∈ Zn
m, we define gw ∈ Cn

m by (gw(1), . . . , gw(n));

• For w,v ∈ Zn
m we define the multiplicative line Mw,v through w in direction v to be the

multi-set
Mw,v =

{
gw+λv | λ ∈ Zm

}
; (1)

• For u ∈ Zn
m, we define the monomial monu ∈ Fq[z1, . . . , zn] by

monu(z1, . . . , zn) =
∏
ℓ∈[n]

z
u(ℓ)
ℓ . (2)
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3.1 The general encoding/decoding framework

Observe that for any w,u,v ∈ Zn
m and λ ∈ Zm we have

monu

(
gw+λv

)
= g(u,w)

(
gλ
)(u,v)

. (3)

The formula above implies that the Mw,v-evaluation of a monomial monu is a Cm-evaluation
of a (univariate) monomial

g(u,w)y(u,v) ∈ Fq[y]. (4)

This observation is the foundation of our decoding algorithms. We now specify the encoding
procedure and outline the main steps taken by all decoding procedures described later on (propo-
sitions 3, 7, and 8). Let U ,V be an S-matching family in Zn

m.

Encoding: We encode a message (x(1), . . . ,x(k)) ∈ Fk
q by the Cn

m-evaluation of the polynomial

F (z1, . . . , zn) =

k∑
j=1

x(j) ·monuj(z1, . . . , zn). (5)

Notice that F = Fx is a function of the message x (we will omit the subscript and treat x as fixed
throughout this section).

Basic decoding: The input to the decoder is a (corrupted) Cn
m-evaluation of F and an index

i ∈ [k].

1. The decoder picks w ∈ Zn
m uniformly at random;

2. The decoder recovers the noiseless restriction of F to Mw,vi . To accomplish this the decoder
may query the (corrupted) Mw,vi-evaluation of F at m or fewer locations.

To see that noiselessMw,vi-evaluation of F uniquely determines xi note that by formulas (3), (4)
and (5) the Mw,vi-evaluation of F is a Cm-evaluation of a polynomial

f(y) =

k∑
j=1

x(j) · g(uj ,w)y(uj ,vi) ∈ Fq[y]. (6)

Further observe that the properties of the S-matching family U ,V and (6) yield

f(y) = x(i) · g(ui,w) +
∑
s∈S

 ∑
j : (uj ,vi)=s

x(j) · g(uj ,w)

 ys. (7)

It is evident from the above formula that

x(i) = f(0)/g(ui,w) (8)

and that supp(f) ⊆ S ∪ {0}.
We now describe several local decoders that follow the general paradigm outlined above.
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3.2 The simplest decoder

The proposition below gives the simplest local decoder. In the current form it has first appeared
in [Efr09]. Earlier versions can be found in [Yek08, Rag07].

Proposition 3 Let U ,V be a family of S-matching vectors in Zn
m, |U| = |V| = k, |S| = s. Suppose

m | q− 1, where q is a prime power; then there exists a q-ary linear code encoding k-long messages
to mn-long codewords that is (s+ 1, δ, (s+ 1)δ)-locally decodable for all δ.

Proof: The encoding procedure has already been specified by formula (5). To recover the
value x(i)

1. The decoder picks w ∈ Zn
m at random, and queries the (corrupted) Mw,vi-evaluation of F at

(s+ 1) consecutive locations
{
gw+λv | λ ∈ {0, . . . , s}

}
to obtain values c0, . . . , cs.

2. The decoder recovers the unique sparse univariate polynomial h(y) ∈ Fq[y] with supp(h) ⊆
S ∪ {0} such that for all λ ∈ {0, . . . , s}, h(gλ) = cλ. (The uniqueness of h(y) follows from
standard properties of Vandermonde matrices.)

3. Following the formula (8) the decoder returns h(0)/g(ui,w).

The discussion above implies that if all (s+1) locations queried by the decoder are not corrupted
then h(y) is indeed the noiseless restriction of F to Mw,vi , and decoder’s output is correct. It
remains to note that each individual query of the decoder goes to a uniformly random location and
apply the union bound.

Remark 4 In the proposition above we interpolate the polynomial h(y) to recover its free coef-
ficient. In certain cases (relying on special properties of the integer m and the set S) it may be
possible to recover the free coefficient in ways that do not require complete interpolation and thus
save on the number of queries. This general idea has been used in [Yek08], [Efr09] for the case of
three-query codes, and in [IS08].

3.3 Improved decoding using bounded matching families

We now introduce the concept of a bounded matching family of vectors and show how MV codes
based on bounded matching families can be decoded from large amounts of error. In what follows
we identify Zm with the subset {0, . . . ,m − 1} or real numbers. This imposes a total ordering on
Zm, 0 < 1 < . . . < m− 1 and allows us to compare elements of Zm with reals.

Definition 5 Let b be a positive real. A set S ⊆ Zm is b-bounded if for all s ∈ S, s < b.

Definition 6 Let b be a positive real. An S-matching family U ,V in Zn
m is b-bounded if the set S

is b-bounded.

Proposition 7 Let σ be a positive real. Let U ,V be a σm-bounded family of S-matching vectors
in Zn

m, |U| = |V| = k. Suppose m | q− 1, where q is a prime power; then there exists a q-ary linear
code encoding k-long messages to mn-long codewords that is (m, δ, 2δ/(1− σ))-locally decodable for
all δ.
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Proof: The encoding procedure has already been specified by formula (5). To recover the
value x(i)

1. The decoder picks w ∈ Zn
m at random, and queries every point of the (corrupted) Mw,vi-

evaluation of F at all m locations
{
gw+λv | λ ∈ Zm

}
to obtain values c0, . . . , cm−1.

2. The decoder recovers the univariate polynomial h(y) ∈ Fq[y] of degree less than σm such that
for all but at most (m − σm)/2 values of λ ∈ Zm, h(gλ) = cλ. If such an h does not exist
the decoder encounters a failure, and returns 0. Note that deg h < σm implies that h(y) is
unique, if it exists. The search for h(y) can be done efficiently using the Berlekamp-Welch
algorithm [MS77].

3. Following the formula (8) the decoder returns h(0)/g(ui,w).

The discussion above implies that if the Mw,vi-evaluation of F is corrupted in at most (m −
σm)/2 locations, then h(y) is indeed the noiseless restriction of F to Mw,vi , and the decoder’s
output is correct. It remains to note that each individual query of the decoder goes to a uniformly
random location and thus by Markov’s inequality the probability that more than (m − σm)/2 of
decoder’s queries go to corrupted locations is at most 2δ/(1− σ).

3.4 Further improvement for small and bounded S

The improved decoding described in the previous section did not use any information on the size of
the set S (only the fact that all elements in S are bounded). We now show that, in the case when
|S| is bounded and small (and ln q is small relative to m), one can get an even better result.

Proposition 8 Let σ be a positive real. Let U ,V be a σm-bounded family of S-matching vectors in
Zn
m, |U| = |V| = k, |S| = s. Suppose m | q − 1, where q is a prime power; then there exists a q-ary

linear code encoding k-long messages to mn-long codewords that is (r, δ, ϵ)-locally decodable for all
α, δ, where

r = ⌈(s+ 2) ln q/α2⌉,

ϵ =
2δ

(1− σ − α)
.

Proof: Our decoding algorithm is similar to the one of proposition 7. The saving in the number
of queries comes from the fact that the decoder does not query all points on the multiplicative line
but rather partitions the line into classes, and queries all points within a certain class. Our proof
consists of two parts. Firstly, we establish the existence of an appropriate partition. Secondly, we
present the decoding algorithm. We start with some notation. Let α > 0 be fixed.

• Let L ⊆ Fq[y] be the linear space of polynomials whose support is contained in {0} ∪ S;

• Let T ⊆ Zm. We say that T is α-regular, if for all h ∈ L we have∣∣∣T ∩
{
λ ∈ Zm | h(gλ) = 0

}∣∣∣ < (σ + α)|T |; (9)
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• Let t ≤ m be a fixed positive integer. Let π be a partition of Zm into p = ⌊m/t⌋ classes where
each class is of size t or more

Zm =

p⊔
ℓ=1

πℓ; (10)

• We say that π is α-regular, if for each ℓ ∈ [p], πℓ, is α-regular.

We now argue that for a sufficiently large t, there exists a partition π satisfying (10) that is
α-regular. Fix an arbitrary non-zero polynomial h ∈ L. Let W =

{
λ ∈ Zm | h(gλ) = 0

}
. Clearly,

|W | < σm. Fix t′ ≥ t and pick a set T ⊆ Zm of size exactly t′ uniformly at random.

Pr [|T ∩W | ≥ (σ + α)t′] = Pr [|T ∩W | − σt′ ≥ αt′] ≤

Pr [|T ∩W | − E(|T ∩W |) > αt′] ≤ exp(−2α2t),
(11)

where the last inequality follows from [DP09, theorem 5.3].
Now let t = ⌈(s+ 2) ln q/2α2⌉. If t > m; then the proposition trivially follows from the propo-

sition 7. We assume t ≤ m and pick π to be a random partition satisfying (10). Clearly, no class
in π has size more than 2t− 1. Relying on (11), the union bound, and m/t < q we conclude that π
is α-regular with positive probability since

(m/t)(q(s+1) − 1) < e2α
2t. (12)

Fix an α-regular π. We are now ready to define the code. The encoding procedure has already been
specified by formula (5). To recover the value x(i)

1. The decoder picks w ∈ Zn
m and ℓ ∈ [p] uniformly at random, and queries points of the (cor-

rupted)Mw,vi-evaluation of F at |πℓ| locations
{
gw+λv | λ ∈ πℓ

}
to obtain values {cλ | λ ∈ πℓ} .

2. The decoder recovers the univariate polynomial h(y) ∈ Fq[y] with supp(h) ⊆ {0} ∪ S such
that for all but at most (1− σ − α)|πℓ|/2 values of λ ∈ πℓ, h(g

λ) = cλ. If such an h does not
exist the decoder encounters a failure, and returns 0. Note that the properties of π imply that
h(y) is unique, if it exists.

3. Following the formula (8) the decoder returns h(0)/g(ui,w).

The discussion above implies that if at most (1− σ− α)|πl|/2 locations queried by the decoder
are corrupted; then h(y) is indeed the noiseless restriction of F to Mw,vi , and the decoder’s output
is correct. It remains to note that each individual query of the decoder goes to a uniformly random
location and thus by Markov’s inequality the probability that more than (1− σ − α)|πl|/2 queries
go to corrupted locations is at most 2δ/(1−σ−α), and to observe that the total number of queries
is at most 2t− 1.

3.5 From q-ary to binary codes

Propositions 7 and 8 yield non-binary locally decodable codes. As we remarked earlier our main
interest is in binary LDCs. The next lemma extends proposition 7 to produce binary codes. The idea
behind the proof is fairly standard and involves concatenation with a good binary error correcting
code.
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Lemma 9 Let σ be a positive real. Let U ,V be a σm-bounded family of S-matching vectors in Zn
m,

|U| = |V| = k. Suppose m | q − 1, where q = 2b. Further suppose that there exists a binary linear
code Cinner of distance µB encoding b-bit messages to B-bit codewords; then there exists a binary
linear code C encoding kb-bit messages to mnB-bit codewords that is (mB, δ, 2δ/(µ − µσ))-locally
decodable for all δ.

Proof: Observe that the condition of the lemma is strictly stronger than the condition of proposi-
tion 7. Thus the implication of proposition 7 holds. Let Couter be the 2

b-ary (m, δ, 2δ/(1−σ))-LDC
encoding k-long messages to mn-long codewords. We define the code C to be the concatena-
tion [MS77, vL82] of Couter and Cinner. In order to decode a single bit, the decoder recovers the
symbol of the large alphabet that the bit falls into.

Recall that in order to recover a single coordinate of the message the decoder of Couter queries
the corrupted encoding at m points of a multiplicative line, and than solves the Reed Solomon
decoding problem (i.e., finds the unique univariate polynomial of degree less than σm that agrees
with the observed sequence of values in all but at most (1− σ)m/2 locations).

The decoder of C acts similarly. Firstly, it entirely reads m corrupted B-bit codewords of
the inner code that store (encoded) coordinate values of the outer code along a randomly chosen
multiplicative line. Secondly, it decodes a binary code that is a concatenation of a Reed Solomon
code of degree less then σm over F2b and a binary code Cinner up to half of its minimum distance.
Decoding is correct provided that the total number of errors in mB locations read is at most
(1− σ)µmB/2. Decoding can be done efficiently provided that Cinner has an efficient decoder.

It remains to note that each individual query of the decoder goes to a uniformly random location
and thus by Markov’s inequality the probability that more than (1−σ)µmB/2 of decoder’s queries
go to corrupted locations is at most 2δ/(µ− µσ).

Proposition 7 allows one to obtain LDCs over large alphabets that tolerate δ up to 1/4. Lemma 9
allows one to obtain binary LDCs that tolerate δ up to 1/8.

4 Matching vectors: constructions

In this section we present two constructions of bounded matching families of vectors (lemmas 13
and 14). Later in section 5 we use the first family of obtain MV codes that improve upon LDCs
of [Efr09, IS08] in terms of the amount of noise that that can tolerate, and improve upon classical r-
query RM LDCs in terms of codeword length for all r ≤ log k/(log log k)c. We use the second family
to obtain codes that (roughly) match RM LDCs for r = Θ(log k log log k). Our first construction
is based on an existing matching family due to Grolmusz [Gro00]. We argue that an appropriate
scaling turns Grolmusz’s family into bounded.

Definition 10 (Canonical set) Let m =
∏t

i=1 pi be a product of distinct primes. The canonical
set in Zm is the set of all non-zero s such that for every i ∈ [t], s ∈ {0, 1} mod pi.

Basic parameters of Grolmusz’s family are given by the following lemma. The lemma (as stated
below) is new. The proof is modeled along the lines of Grolmusz’s construction of a set system
with restricted intersections modulo composites [Gro00, Gro02]. We defer the proof to appendix.
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Lemma 11 Let m =
∏t

i=1 pi be a product of distinct primes. Let w be a positive integer. Let {ei},
i ∈ [t] be integers such that for all i, we have peii > w1/t. Let d = maxi p

ei
i , and h ≥ w be arbitrary.

Let S be the canonical set; then there exists an
(

h
w

)
-sized family of S-matching vectors in Zn

m,

where n =
(

h
≤d

)
.

We now argue that a canonical set can be turned into a bounded one via scaling by an invertible
element.

Lemma 12 Let m =
∏t

i=1 pi be a product of distinct primes. Let S be the canonical set in Zm.
There exists an α ∈ Z∗

m such that the set αS is σm-bounded for any σ >
∑

i∈[t] 1/pi.

Proof: We start with some notation.

• For every i ∈ [t], define the integer p̂i = m/pi;

• Let α ∈ Z∗
m be the unique element such that for all i ∈ [t], α = p̂i mod pi.

Observe that for any i, j ∈ [t],

(
α−1p̂i

)
mod pj =

{
1, if i=j;
0, otherwise.

Let s ∈ S be arbitrary. Set I = {i ∈ [t] | pi does not divide s}. Observe that s = α−1
∑

i∈I p̂i.
Therefore

αs =
∑
i∈I

p̂i ≤ m
∑
i∈[t]

1/pi.

The lemma above implies that any S-matching family U ,V where S is the canonical set can
be turned into a bounded one (by scaling all vectors in V by an invertible element). Combining it
with lemma 11 we obtain

Lemma 13 Let m =
∏t

i=1 pi be a product of distinct primes. Let w be a positive integer. Let {ei},
i ∈ [t] be integers such that for all i, we have peii > w1/t. Let d = maxi p

ei
i , and h ≥ w be arbitrary.

Then there exists an
(

h
w

)
-sized σm-bounded family of matching vectors in Zn

m, where n =
(

h
≤d

)
and σ is an arbitrary real number larger than

∑
i∈[t] 1/pi.

The following lemma gives another (simple) family of bounded matching vectors.

Lemma 14 Let m and n be arbitrary positive integers such that n is even and m > n/2. There

exists an (n/2)-bounded
(

n
n/2

)
-sized family of matching vectors in Zn

m.

Proof: Let U be the family of all vectors in {0, 1}n that have weight exactly n/2. For every vector
ui ∈ U set vi to be its complement, (i.e., vi is the unique binary vector such that d(ui,vi) = n.) It
is not hard to see that the family U ,V is indeed n/2-bounded.

11



5 Upper bounds for MV codes

In this section we combine the results of the previous sections to derive upper bounds on MV codes.
A combination of lemma 9 and lemma 13 yields

Lemma 15 Let m =
∏t

i=1 pi be a product of distinct primes. Let w be a positive integer. Suppose
integers {ei}, i ∈ [t] are such that for all i, we have peii > w1/t. Let d = maxi p

ei
i , and h ≥ w be

arbitrary. Let σ is an arbitrary real number larger than
∑

i∈[t] 1/pi. Suppose m | q−1, where q = 2b.
Further suppose that there exists a binary code Cinner of distance µB encoding b-bit messages to B-

bit codewords; then there exists a binary linear code C encoding
(

h
w

)
·b-bit messages to m

(
h
≤d

)
·B-bit

codewords that is (mB, δ, 2δ/(µ− µσ))-locally decodable for all δ.

In what follows we estimate asymptotic parameters of our codes.

Lemma 16 There exists c > 1 such that for all integers t ≥ 2 and k ≥ 2c2
t
there exists a binary

linear code encoding k-bit messages to

N = exp exp
(
(log k)1/t(log log k)1−1/tt ln t

)
-bit codewords that is

(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-locally decodable for all δ.

Proof: The proof follows by appropriately setting the parameters in lemma 15.

1. By [Sho05, theorem 5.7] there exists a universal constant c′ such that the range [(c′/2)t ln t, c′t ln t]
contains at least t distinct odd primes p1, . . . , pt;

2. Note that
∑

i∈[t] 1/pi = O(1/ ln t);

3. Set m =
∏

i∈[t] pi. Clearly, m = tO(t);

4. Set b to be the smallest positive integer such that m
∣∣2b − 1 Clearly, b = tO(t). Set q = 2b;

5. A standard greedy argument (that is used to prove the classical Gilbert-Varshamov bound [MS77,
vL82]) implies that there is a universal constant c′′ such that for all integers s ≥ 1, there exists
a binary linear code of distance (1/2− c′′/

√
s)s2 encoding s-bit messages to s2-bit codewords.

We set Cinner to be a binary linear code that encodes b-bit messages to B = tO(t)-bit codewords
and has distance µB, for µ ≥

(
1/2− c′′/tΩ(t)

)
;

6. We now assume that there exists a positive integer w which is a multiple of t such that
k = ww/t. Clearly, we have w = Θ(t log k/ log log k);

7. Following lemma 15 for every i ∈ [t], let ei be the smallest integer such that peii > w1/t. Let
d = maxi p

ei
i . Clearly, d = O(w1/tt ln t);

8. Set h = w1+1/t;

9. k = ww/t ≥ 2c2
t
yields w1/t > 2 and h > 2w. Therefore

(
h
w

)
b ≥ (h/w)w ≥ k;

12



10. We set the constant c large enough to ensure that (independent of t) we have h > 2d. This

implies
(

h
≤d

)
≤ (eh/d)d. We set N = m

(
h
≤d

)
B ≤ tO(t)+x, where x = O(t)(ew)O(w1/tt ln t);

11. We combine lemma 15 with inequalities that we proved above and make basic manipulations to
obtain a binary linear code encoding k-bit messages to exp exp

(
(log k)1/t(log log k)1−1/tt ln t

)
-

bit codewords that is
(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-locally decodable for all δ.

12. Finally, we note that the assumption about k = ww/t, for some w can be safely dropped. If k
does not have the required shape, we pad k-bit messages with zeros to get messages of length
k′, where k′ has the shape ww/t and then apply the procedure above. One can easily check
that such padding requires a sub-quadratic blow up in the message length and therefore does
not affect asymptotic parameters.

Setting t to be a constant in lemma 16 yields

Theorem 17 For every integer t ≥ 2 and all sufficiently large integers k, there exists a bi-
nary linear code encoding k-bit messages to exp exp

(
(log k)1/t(log log k)1−1/t

)
-bit codewords that

is
(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-locally decodable for all δ.

For every constant t ≥ 2, theorem 17 gives a family of
(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-locally decod-

able codes of length essentially identical to the length of the shortest known
(
2O(t), δ, 2O(t)δ

)
-locally

decodable codes of [Efr09, IS08]. Our codes can tolerate much larger amounts of noise, (i.e., for
large values of t our codes tolerate approximately 1/8 fraction of errors, while the fraction of errors
tolerated by codes from earlier work drops to zero rapidly.) The improvement comes at a price of
a moderate increase in the number of queries.

The following theorem gives asymptotic parameters of our codes in terms of r and k.

Theorem 18 For every large enough integer r and every k, such that k > 2r there exists a binary
linear code encoding k-bit messages to

exp exp
(
(log k)O(log log r/ log r)(log log k)1−Ω(log log r/ log r) log r

)
(13)

bit codewords that is (r, δ, 4δ(1 +O(1/ ln ln r)))-locally decodable for all δ.

Proof: The proof follows by setting parameters in lemma 16. Set t to be the largest integer such
that tO(t) ≤ r, where the constant in O-notation is the same as the one in lemma 16. Assuming r
is sufficiently large we have t = Θ(log r/ log log r). One can also check that k > 2r implies that the
pre-condition of lemma 16 is satisfied. An application of the lemma concludes the proof.

5.1 MV codes over characteristic zero

We remark here that the entire construction and analysis of MV codes described in the preceding
sections (apart from the parts dealing with reduction to the binary case) work also if the underlying
field, Fq, is replaced with the complex number field C. The only property we used in Fq is that it
contains an element of order m, which trivially holds over C for every m. This implies the existence
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of linear LDC’s with essentially the same parameters as above also over the complex numbers (the
definition of LDC’s over an arbitrary field is the same as for finite fields, we simply allow the decoder
to preform field arithmetic operations on its inputs). Once one has linear a code over the complex
numbers, it is straight forward to get a code over the reals by writing each complex number as a
pair of real numbers.

We find this interesting since, previous to MV codes, there were no known constructions of
LDC’s over characteristic zero (apart from trivial 2-query codes of exponential stretch). In fact,
there are no known constructions, apart for MV codes, even over finite fields with very large
characteristic (RM codes require that the characteristic will be at most the number of queries).
Even though this might seem like an esoteric setting, LDC’s over characteristic zero did came up
in some recent works in connection to arithmetic circuit complexity [DS06, Dvi09].

5.2 Comparison to Reed Muller codes

Theorem 18 yields the first family of locally decodable codes (other than RM codes) that have
super-constant query complexity and tolerate a constant fraction of errors. In this section we
provide a comparison between RM codes and our codes.

A Reed Muller locally decodable code [KT00, Tre04, Yek10] is specified by three integer param-
eters. Namely, a prime power (alphabet size) q, number of variables n, and the degree d < q − 1.
The q-ary code consists of Fm

q -evaluations of all polynomials in Fq[z1, . . . , zn] of total degree at most

d. Such code encodes k =
(
n+d
d

)
-long messages to qn-long codewords. Provided that d < σ(q− 1),

the code is (q−1, δ, 2δ/(1−σ))-locally decodable for all δ. If q is a power of 2 non-binary RM LDCs
can be turned into binary via concatenation (in a manner similar to the one used in lemma 9). If
one does concatenation with an asymptotically good code of relative distance µ one gets a binary
linear code encoding k-bit messages to N -bit codewords that is (r, δ, 2δ/(µ−µσ))-locally decodable
for all δ, where

k =

(
n+ d

d

)
log q, N = Θ(qn log q), r = Θ(q log q). (14)

One can get various asymptotic families of RM LDCs by specifying an appropriate relation
between n and d and letting these parameters grow to infinity. Increasing d relative to m yields
shorter codes of larger query complexity.

Example 19 Setting d = n, q = cn (for a constant c), and letting n grow while concatenating
with asymptotically good binary codes of relative distance µ one gets a family of binary LDCs that
encode k-bit messages to kΘ(log log k)-bit codewords and are (Θ(log k log log k), δ, 2δ/(µ− 2µ/c))-
locally decodable for all δ.

We now argue that RM LDCs are inferior to codes of theorem 18 (with respect to codeword
length) for all r ≤ log k/(log log k)c, where c is a universal constant. To arrive at such a conclusion
we need a lower bound on the length of RM LDCs. Let d, n, and q be such that formulas (14)
yield an r-query LDC, where r belongs to the range of our interest. We necessarily have d ≤ n
(otherwise r > log k). Thus

k =

(
n+ d

d

)
log q ≤ (en/d)d log q ≤ nO(d), (15)
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and n ≥ kΩ(1/d). Therefore writing exp(x) to denote 2Ω(x), we have

N ≥ exp exp (log k/d) ≥ exp exp (log k/r) . (16)

Note that when r is a constant then already 3-query codes of [Efr09] improve substantially upon (16).
To conclude the argument one needs to verify that there exists a constant c such that for every
nondecreasing function r(k), where r(k) grows to infinity, and satisfies r(k) ≤ log k/(log log k)c, for
all sufficiently large k the right hand side of (16) evaluates to a larger value than (13).

Remark 20 It is interesting to observe that while MV codes of theorem 18 improve upon RM
LDCs only for r ≤ log k/(log log k)c, one can get MV codes that (asymptotically) match RM LDCs
of example 19 combining lemma 14 (where m has the shape 2b − 1) with lemma 9.

6 Matching Vectors: limitations

Let k(m,n) denote the size of the largest family of S-matching vectors in Zn
m where we allow

S to be an arbitrary subset of Zm \ {0}. The rate of any locally decodable code obtained via
propositions 3, 7, or 8 is at most k(m,n)/mn. Our goal in this section is to prove upper bounds on
k(m,n). In section 7 we translate these bounds into lower bounds on the length of MV codes. We
start by bounding k(m,n) in the prime case.

6.1 The Prime Case

We present two bounds for the prime case, the first is based on the linear algebra method [BF92]
and is better for small p. It is tight when p = 2. Our second bound beats the linear algebra bound
when p is large compared to n, it is tight for n = 2.

Theorem 21 For any positive integer n and any prime p, we have

k(p, n) ≤ 1 +

(
n+ p− 2

p− 1

)
.

Proof: Let U = {u1, . . . ,uk}, V = {v1, . . . ,vk} be a family of S-matching vectors of Fn
p , for some

S ⊆ F∗
p. For each i ∈ [k], we consider the polynomial

Pi(z1, . . . , zn) = 1−

(
n∑

l=1

vi(l) · zl

)p−1

in the ring Fp[z1, . . . , zn]. It is easy to see that Pi(ui) = 1, whereas Pi(uj) = 0 for all j ̸= i. This
implies that the k polynomials {Pi}ki=1 are linearly independent. But these polynomials all lie in

an Fp vector-space of dimension 1 +
(
n+p−2
p−1

)
, since they are spanned by the monomial 1 and all

monomials of degree exactly p− 1 in z1, . . . , zn.

Remark 22 Let n be a positive integer and p be a prime. Suppose n ≥ p, then

k(p, n) ≥
(
n− 1

p− 1

)
.
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Proof: Take the uis to be all vectors in {0, 1}n of weight p where the first co-ordinate is 1,
and let ui = vi. A simple calculation shows that (ui,vi) = 0 mod p, whereas for i ̸= j we have
(uj ,vi) ∈ {1, . . . , p− 1}.

If p is a constant, the first bound above nearly matches the bound in Theorem 21.

Our second bound comes from translating the problem of constructing matching vectors into
a problem about points and hyperplanes in projective space. The n − 1 dimensional projective
geometry PG(Fp, n − 1) over Fp consist of all points in Fn

p \ {0n} under the equivalence relation
λv ≡ v for λ ∈ F∗

p. Projective hyperplanes are specified by vectors u ∈ Fn
p \ {0n} under the

equivalence relation λu ≡ u for λ ∈ F∗
p; such a hyperplane contains all points v where (u,v) = 0.

We define a bipartite graph H(U, V ) where the vertices on the left correspond to all hyperplanes
in PG(Fp, n − 1), vertices on the right correspond to all points in PG(Fp, n − 1) and u and v are
adjacent if (u,v) = 0. ForX ⊆ U and Y ⊆ V , we defineN(X) andN(Y ) to be their neighborhoods.
We use N(u) for the neighborhood of u.

Definition 23 Let n be a positive integer and p be a prime. Let U be the set of hyperplanes in
PG(Fp, n− 1). We say that a set X ⊆ U satisfies the unique neighbor property if for every u ∈ X,
there exists v ∈ N(u) such that v is not adjacent to u′ for any u′ ∈ X \ {u}.

Lemma 24 Let n be a positive integer and p be a prime. Let U be the set of hyperplanes in
PG(Fp, n − 1). There exists a set X ⊆ U, |X| = k satisfying the unique neighbor property if and
only if there exists a k-sized family of Z∗

p-matching vectors in Zn
p .

Proof: Assume that X = {u1, . . . ,uk} satisfies the unique neighbor property. Let Y =
{v1, . . . ,vk} be such that vi is a unique neighbor of ui. This implies that (ui,vi) = 0 and
(uj ,vi) ̸= 0 for i ̸= j. Thus X,Y gives a Z∗

p-matching vector family in Zn
p .

For the converse, let us start with a k-sized matching vector family U ,V in Zn
p . In case k = 1 the

lemma holds trivially. We claim that if k ≥ 2; then u ∈ U implies that λu ̸∈ U for any λ ∈ F∗
p \{1}.

This is true since (u,v) = 0 implies (λu,v) = 0, which would violate the definition of a matching
vector family. Thus we can associate each u ∈ U with a distinct hyperplane in PG(Fp, n − 1).
Similarly, we can associate every v ∈ V with a distinct point in PG(Fp, n − 1). It is easy to see
that vi is a unique neighbor of ui, hence the set U satisfies the unique neighbor property.

Corollary 25 Let n be a positive integer and p be a prime. Let U be the set of hyperplanes in
PG(Fp, n − 1). The size of the largest set X ⊆ U that satisfies the unique neighbor property is
exactly k(p, n).

The expansion of the graph H(U, V ) was analyzed by Alon using spectral methods [Alo86,
theorem 2.3]. We use the rapid expansion of this graph to bound the size of the largest matching
vector family.

Lemma 26 Let n ≥ 2 be an integer and p be a prime. Let U (V ) be the set of hyperplanes (points)
in PG(Fp, n− 1). Let u = pn−1

p−1 = |U | = |V |. For any nonempty set X ⊆ U with |X| = x,

|N(X)| ≥ u− u
n

n−1 /x. (17)
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Lemma 27 Let n be a positive integer and p be a prime; then

k(p, n) ≤ 4pn/2 + 2. (18)

Proof: If n = 1, inequality (18) holds trivially. We assume n ≥ 2. Let U ⊆ U , V ⊆ V be a
matching family of size k(p, n). Pick X ⊆ U of size x > 0. By (17),

|N(X)| ≥ u− u
n

n−1 /x.

Since every point in U \X must contain a unique neighbor from V \N(X), we have

|U \X| ≤ |V \N(X)| ≤ u
n

n−1

x
⇒ |U| ≤ u

n
n−1

x
+ x. (19)

Note that the inequality in the right hand side of (19) holds for all positive integers x. Picking

x =
⌈
u

n
2(n−1)

⌉
gives

|U| ≤ 2
⌈
u

n
2(n−1)

⌉
≤ 2

(
pn

p− 1

) n
2(n−1)

+ 2 = 2

(
p

p− 1

) n
2(n−1)

pn/2 + 2 ≤ 4pn/2 + 2,

where the last inequality is a simple calculation.

For n = 2, one can construct matching vector families of size Ω(p). For instance, one can choose
U to be the family of all vectors of the form (1, x) and V to be the family of all vectors of the
form (x,−1) for all x ∈ Zp. Therefore one cannot replace 1

2 in the exponent of (18) with a smaller
constant.

6.2 The Prime Power Case

Lemma 28 Let n be a positive integer, p be a prime and e ≥ 2. We have

k(pe, n) ≤ p(e−1)nk(p, n+ 1).

Proof: Assume for contradiction that we have a matching family U = {u1, . . . ,uk},V =
{v1, . . . ,vk} of size k > p(e−1)nk(p, n + 1) in Zn

pe . For every i ∈ [k], write ui = u′
i + pe−1u′′

i

where u′
i ∈ Zn

pe−1 and u′′
i ∈ Zn

p . By the pigeonhole principle, there are k′ > k(p, n + 1) values of

i which give the same vector u′
i ∈ Zn

pe−1 , assume for convenience that the corresponding vectors
in U are u1, . . . ,uk′ with matching vectors v1, . . . ,vk′ . We will use these vectors to construct a
matching vector family of size k′ > k(p, n+ 1) in Zn+1

p , which gives a contradiction.
For each i ∈ [k′], we extend u′′

i to a vector ūi by appending 1 in the last coordinate. For every
i ∈ [k′], write vi = v′

i + pv′′
i where v′

i ∈ Zn
p and v′′

i ∈ Zn
pe−1 . We extend v′

i to a vector v̄i by

appending (u′
i,vi)/p

e−1 ∈ Zp in the last coordinate (we will show that this ratio is in fact integral).
We claim that for all i ∈ [k′], (ūi, v̄i) = 0 mod p. To see this, observe that

(ūi, v̄i) = (u′′
i ,v

′
i) + (u′

i,vi)/p
e−1. (20)

But we have

(ui,vi) = (u′
i,vi) + pe−1(u′′

i ,vi) ≡ (u′
i,vi) + pe−1(u′′

i ,v
′
i) = 0 mod pe

17



From this we conclude that (u′
i,vi) ≡ 0 mod pe−1, and that (u′′

i ,v
′
i) + (u′

i,vi)/p
e−1 = 0 mod p.

From equation (21), we conclude that (ūi, v̄i) = 0 mod p. Next we claim that (ūj , v̄i) ̸= 0 mod p
for i ̸= j ∈ [k′]. We have

(ūj , v̄i) = (u′′
j ,v

′
i) + (u′

i,vi)/p
e−1 (21)

But, since u′
i = u′

j , we also have

(uj ,vi) = (u′
j ,vi) + pe−1(u′′

j ,vi) ≡ (u′
i,vi) + pe−1(u′′

j ,v
′
i) ̸≡ 0 mod pe

which implies that (u′′
j ,v

′
i)+(u′

i,vi)/p
e−1 ̸≡ 0 mod p. This shows that the vectors {ūj}k

′
j=1, {v̄i}k

′
i=1

give a matching vector family of size k′ > k(p, n+ 1), which is a contradiction.

6.3 The Composite Case

Lemma 29 Let m,n, and q be arbitrary positive integers such that q|m and (q,m/q) = 1; then

k(m,n) ≤ (m/q)n k(q, n).

Proof: Let us write m/q = r. Let U = {u1, . . . ,uk}, V = {v1, . . . ,vk} be a family of S-
matching vectors of Zn

m, for some S ⊆ Zm \ {0}. For each vector u ∈ Zn
m we can define the vectors

u′ ≡ u mod q ∈ Zn
q and u′′ ≡ u mod r ∈ Zn

r . From the definition of a matching vector family, we
have that

• For all i ∈ [k], (u′
i,v

′
i) = 0 and (u′′

i ,v
′′
i ) = 0;

• For all i, j ∈ [k] such that i ̸= j, (u′
j ,v

′
i) ̸= 0 or (u′′

j ,v
′′
i ) ̸= 0.

Assume k > (m/q)n k(q, n). By the pigeonhole principle, there exists a vector u ∈ Zn
r such that

u′′
j = u holds for k′ > k(q, n) values of j ∈ [k]. Let us assume that these values are 1, . . . , k′. Note

that for any i, j ∈ [k′] we have (u′′
j ,v

′′
i ) = (u′′

i ,v
′′
i ) = 0. Hence, by the definition of a matching

family, we must have

• For all i ∈ [k′], (u′
i,v

′
i) = 0;

• For all i, j ∈ [k′] such that i ̸= j, (u′
j ,v

′
i) ̸= 0.

Thus vectors {u′
1, . . . ,u

′
k′} and {v′

1, . . . ,v
′
k′} form a matching family mod q of size larger than

k(q, n) which gives a contradiction.

Theorem 30 Let m and n be arbitrary positive integers. Suppose p is a prime divisor of m; then

k(m,n) ≤ 5
mn

p(n−1)/2
.

Proof: Let pe be the largest power of p which divides m. By lemmas 29, 28 and 27, we get

k(m,n) ≤
(
m

pe

)n

p(e−1)n
(
4p(n+1)/2 + 2

)
≤ 5

mn

p(n−1)/2
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The above bound is weak when n and p are constants, for instance it is meaningless for n = 1.
We give another bound below which handles the case of small m. We start with the case when
n = 1.

Lemma 31 Let m ≥ 2 be an arbitrary positive integer; then

k(m, 1) ≤ mO(1/ log logm) = mom(1).

Proof: Let U = {u1, . . . ,uk},V = {v1, . . . ,vk} be a family of Zm\{0}-matching vectors in Z1
m.We

treat every vector u ∈ U as an integer and observe that for any i ̸= j ∈ [k], gcd(ui,m) ̸= gcd(uj ,m).
(Otherwise (ui,vi) = 0 would yield (uj ,vi) = 0.) An application of a standard upper bound on the
number of distinct divisors of an integer [HW85] concludes the proof.

We now proceed to the case of general n.

Theorem 32 Let m and n be arbitrary positive integers; then

k(m,n) ≤ mn−1+om(1).

Proof: Given a vector u ∈ Zn
m, we define the Zm-orbit of u to be the set of all vectors that can

be written as λu for λ ∈ Zm. Unlike over Zp, these orbits are no longer disjoint. We claim that
all of Zn

m can be covered by no more mn

ϕ(m) orbits, and that each such orbit can contribute at most

k(m, 1) vectors to U .
Let U ⊆ Zn

m denote the set of all vectors u such that the GCD of all coordinates of u is 1. Any
vector u′ ∈ Zn

m can be written it as λu for u ∈ U and λ ∈ Zm. Thus the orbits of vectors in U
cover all of Zn

m. For u,u′ ∈ U , we say that u′ ≡ u′′ if u′′ lies in the Zm orbit of u′. It is easy
to see that this is indeed an equivalence relation on U , which divides U into equivalence classes of
size ϕ(m). Thus if we pick U ′ ⊆ U which contains a single representative of each equivalence class,

then the orbits of U ′ contain all of Zn
m. Thus we have |U ′| = |U |

ϕ(m) ≤
mn

ϕ(m) .
Now consider the orbit of any vector u. Assume that it contributes the vector u1 = λ1u, . . . , λtu

to U where λi ∈ Zm. Assume that the matching vectors in V are v1, . . . ,vt. Then it is easy to
see that U ′ = {λ1, . . . , λt} and V ′ = {(u,v1), . . . , (u,vt)} are a matching vector family in one
dimension, so that t ≤ k(m, 1). Thus we conclude that

k(m,n) ≤ mn

ϕ(m)
k(m, 1) ≤ mn−1+om(1).

using a standard lower bound on ϕ(m) [HW85] and lemma 31.

7 Lower bounds for MV codes

We now translate the bounds on matching vector families from the previous section to bounds on
the encoding length of matching vector codes. We argue that any family of (non-binary) match-
ing vector codes, (i.e., codes that for some m and n, encode k(m,n)-long messages to mn-long
codewords) has an encoding blow-up of at least 2Ω(

√
log k).
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Theorem 33 Consider an infinite family of Matching Vector codes Cℓ : Fk
q → FN

q for ℓ ∈ N, where
k = k(ℓ) and N = N(ℓ) go to infinity with ℓ. For large enough ℓ, we have

k ≤ N

20.4
√
logN

⇒ N ≥ k20.4
√
log k.

Proof: For each ℓ, we have a family of matching vectors in Zn
m where m,n depend on ℓ. We have

N = mn while k ≤ k(m,n). First assume that n >
√
logN . Then by theorem 30 with p a prime

divisor of m, we have

k ≤ 5mn

p(n−1)/2
≤ 5N

20.5
√
logN−1/2

≤ N

20.4
√
logN

where the last inequality holds for large enough N , and hence for all large ℓ. Hence assume that
n ≤

√
logN so that m ≥ 2

√
logN . As ℓ goes to infinity, N and hence m go to infinity. So for large

enough ℓ, Theorem 32 gives k(m,n) ≤ mn−1+om(1) ≤ mn−0.9. Hence

k ≤ mn

m0.9
≤ N

20.9
√
logN

.

Thus k ≤ N
20.4

√
logN

for large enough ℓ. This implies that N ≥ k20.4
√
log k for large enough ℓ.

One can generalize theorem 33 to get a similar statement for binary MV codes (i.e., codes
obtained by a concatenation of a non-binary MV code with an asymptotically good binary code).

Theorem 34 Let {mℓ} and {nℓ}, ℓ ∈ N be two arbitrary sequences of positive integers, such that
mℓ

nℓ monotonically grows to infinity. Consider an infinite family of binary codes Cℓ : Fkℓ
2 → FNℓ

2

for ℓ ∈ N, where each code Cℓ is obtained via a concatenation of an MV code encoding k(mℓ, nℓ)-
long messages to mnℓ

ℓ -long codewords over Fqℓ , (here qℓ = 2t is the smallest such that mℓ | 2t − 1)
with an asymptotically good binary code of some fixed rate; then for large enough ℓ the relative
redundancy of Cℓ is at least 2Ω(

√
log kℓ).

Proof: Pick a sufficiently large value of ℓ. Consider two cases

• nℓ ̸= 1. Observe that the argument in the end of section 6.1 yields k(mℓ, nℓ) ≥ mℓ. Next note

that by theorem 33 relative redundancy of the non-binary code is at least 2
Ω
(√

log k(mℓ,nℓ)
)
,

and the concatenation with a binary code can only increase relative redundancy. Finally
note that the dimension kℓ of the binary code is at most k(mℓ, nℓ)mℓ ≤ k2(mℓ, nℓ). Thus

2
Ω
(√

log k(mℓ,nℓ)
)
≥ 2Ω(

√
log kℓ), for an appropriately chosen constant in Ω notation.

• nℓ = 1. Set k′ = k(mℓ, nℓ). Be lemma 31, k′ = m
o(1)
ℓ . Note that kℓ = k′t and Nℓ = Ω(mt), for

some t ≤ m. These conditions yield Nℓ ≥ Ω
(
k
3/2
ℓ

)
.

7.1 Comparison with RM LDCs

Here we observe that it is possible to construct binary RM LDCs that have a blow-up of 2O(
√
log k)

and query complexity of (log k)O(
√
log k). By formula (14) the relative redundancy of any RM LDC

specified by parameters n, d and q is given by

k/N ≤ O

((
n+ d

d

)
/qn
)
.
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We assume that n < d; then
(
n+d
d

)
≤ (2ed/n)n. Therefore (relying of d ≤ q) we get

k/N ≤ O((2e/n)n).

Thus to have relative redundancy smaller than 2O(
√
log k) it suffices to have

n = O
(√

log k/ log log k
)
. (22)

Given k we choose m to be the largest integer satisfying (22). Next we choose d to be the smallest

integer satisfying k ≤
(
n+d
d

)
log q. One can easily check that this yields d = (log k)O(

√
log k), giving

an RM LDC with desired parameters.

8 Conclusions

In this work we developed a new view of matching vector codes and uncovered certain similarities
between MV codes and classical Reed Muller codes. Our view allowed us to obtain a deeper
insight into the power and limitations of MV codes. We showed that similarly to Reed Muller
codes MV codes constitute a rich code class containing codes of both constant and growing query
complexities, capable of tolerating large amounts of noise. We showed that for query complexity
r ≤ log k/(log log k)O(1) MV codes are superior to RM LDCs and for r ≥ (log k)Ω(

√
log k) MV codes

are inferior to RM codes. There are many questions that are left open by our work. We elaborate
on two of them.

• It is very interesting to see if one can get MV codes that improve upon RM codes for values
of r in the range log k/(log log k)O(1) ≤ r ≤ (log k)Ω(

√
log k). This calls for constructions of

bounded matching families in Zn
m, where m is comparable to (or larger than) n.

• Our proposition 7 yields MV LDCs over large alphabets that tolerate δ up to 1/4. Lemma 9
yields binary MV LDCs that tolerate δ up to 1/8. The same critical values of δ apply to RM
codes when one employs a local decoder that shoots a line and decodes along it [STV01].
However in case of RM LDCs one can use the local decoder of [GS92], that decodes along
degree two curves rather than lines, and tolerates δ up to 1/2 over large alphabets and δ up
to 1/4 over F2. It is interesting to see if one can get an analogous improvement in the case of
MV codes.
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9 Appendix

Our goal here is to prove the following

Lemma 11 Let m =
∏t

i=1 pi be a product of distinct primes. Let w be a positive integer. Suppose
integers {ei}, i ∈ [t] are such that for all i, we have peii > w1/t. Let d = maxi p

ei
i , and h ≥ w be

arbitrary. Let S be the canonical set modulo m; then there exists an
(

h
w

)
-sized family of S-matching

vectors in Zn
m, where n =

(
h
≤d

)
.

Our construction of the matching family is modeled along the lines of Grolmusz’s construction of
a set system with restricted intersections modulo composites [Gro00, Gro02]. His construction uses
the low-degree OR representations of Barrington et al. [BBR94]. However, we will use Lemma 36
to bypass the set system and go directly to the matching family from polynomials. In addition to
being more direct, this also gives a slightly larger collection of vectors.

Definition 35 Let S ⊆ Zm\{0}. We say that a set of polynomials F = {f1, . . . , fk} ⊆ Zm[z1, . . . , zh]
and a set of points X = {x1, . . . ,xk} ⊆ Zh

m form a polynomial S-matching family of size k if

• For all i ∈ [k], fi(xi) = 0;

• For all i, j ∈ [k] such that i ̸= j, fj(xi) ∈ S.

Let F ,X be a k-sized polynomial matching family. For i ∈ [k], let supp(fi) denote the set of
monomials in the support of the polynomial fi. We define supp(F) =

∪k
i=1 supp(fi) and dim(F) =

|supp(F)|. The following lemma was observed by Sudan [Sud09].

Lemma 36 An k-sized polynomial S-matching family F ,X over Zm yields a k-sized S-matching
family U ,V in Zn

m, where n = dim(F).

Proof: Let mon1, . . . ,monn be the set of monomials in supp(F). For every j ∈ [k] we have

fj(z1 . . . , zh) =

n∑
l=1

cjlmonl.

We define the vector uj to be the n-dimensional vector of coefficients of the polynomial fj . Similarly,
for i ∈ [k], we define the vector vi to be the vector of evaluations of monomials mon1, . . . ,monn
at the point xi. It is easy to check that for all i, j ∈ [k], (uj ,vi) = fj(xi) and hence the sets U ,V
indeed form an S-matching family.

In what follows we assume that parameters m, t, {pi}i∈[t], {ei}i∈[t], w, h, and the set S satisfy
the precondition of lemma 11. Theorem 2.16 in [Gop06] yields

Lemma 37 For every i ∈ [t], there is an explicit multilinear polynomial fi(z1, . . . , zh) ∈ Zpi [z1, . . . , zh]
where deg(fi) ≤ peii − 1 such that for x ∈ {0, 1}h, we have

fi(x) ≡

{
0 mod pi, if

∑h
l=1 x(l) ≡ w mod peii ,

1 mod pi, otherwise.
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Corollary 38 There is an explicit multilinear polynomial f(z1, . . . , zh) ∈ Zm[z1, . . . , zn] such that
for all x ∈ {0, 1}h, we have

f(x) =

{
0 mod m, if

∑h
l=1 x(l) = w,

s mod m, for s ∈ S, if
∑h

l=1 x(l) < w,

where coordinates of x are summed as integers.

Proof: Define the polynomial f so that for all i ∈ [t], f(z1, . . . , zh) ≡ fi(z1, . . . , zh) mod pi. We
claim that it satisfies the above requirement. Observe that by the Chinese remainder theorem

f(x) = 0 mod m iff for all i ∈ [t],

h∑
l=1

x(l) ≡ w mod peii .

This is equivalent to saying that

h∑
l=1

x(l) ≡ w mod
∏
i

peii .

Note that for all i ∈ [t], peii > w1/t. Hence m =
∏

i p
ei
i > w. Thus whenever the integer sum∑h

l=1 x(l) < w, we have
∑h

l=1 x(l) ̸≡ w mod m, which proves the claim.

Proof of lemma 11: For every T ⊆ [h] of size w, define the polynomial fT wherein the
polynomial f from corollary 38, we set zj = 0 for j ̸∈ T (but zj stays untouched for j ∈ T ). Define
xT ∈ {0, 1}h to be the indicator of the set T . Viewing vectors x ∈ {0, 1}h as indicator vectors xL

for sets L ⊆ [h], it is easy to check that for all T,L ∈ [h], fT (xL) = f(xL∩T ). Combining this with
Corollary 38 gives

• For all T ⊆ [h], where |T | = w, fT (xT ) = f(xT ) ≡ 0 mod m,

• For all T ̸= L ⊆ [h], where |T | = |L| = w, fT (xL) = f(xL∩T ) ∈ S mod m,

where the second bullet follows from the observation that |L ∩ T | ≤ w − 1. Thus the set of
polynomials F = {fT }T⊆[h],|T |=w and points X = {xT }T⊆[h],|T |=w form a polynomial S-matching
family.

It is clear that k = |F| =
(

h
w

)
. To bound n, we note that deg(f) ≤ d and f is multilinear.

Thus we can take supp(F) to be the set of all multilinear monomials in z1, . . . , zh of degree at most

d. Thus dim(F) =
(

h
≤d

)
.
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