
Computer Science and Engineering, UCSD October 7, 1999

Goldreich-Levin Theorem Author: Bellare

The Goldreich-Levin Theorem

1 The problem

We �x a an integer n for the length of the strings involved. If a is an n-bit string and 1 � i � n

then a(i) denotes the i-th bit of a. If a; b are n-bit strings then

ha; bi= a
(1)
b
(1) + a

(2)
b
(2) + � � � a(n)b(n)

denotes the inner product of a and b. The operations here are modulo two, meaning we work over

the �nite �eld of two elements, so the value above is a bit.

We are given an oracle Bx: f0; 1g
n ! f0; 1g and a real number � > 0 such that

Pr
h
Bx(r) = hx; ri : r

R

 f0; 1gn
i
=

1

2
+

�

2
: (1)

We call � the advantage of Bx. We are not directly given x.

We are also given another oracle EQx: f0; 1g
n ! f0; 1g which given any y 2 f0; 1gn returns 1 if

y = x and 0 otherwise. In other words, we can test whether or not a given string equals x.

The problem is, given these two oracles, to �nd x. We want to �gure out how to do it and also

what is the complexity.

More precisely, we wish to design an algorithm A that given the above two oracles returns a string

x0. The success probability of A is the probability that x = x0, taken over the coin tosses of A. We

seek A having success probability at least 1=2. We let qB denote the number of calls made by A

to Bx and qE the number of calls to EQx. We let t be the running time plus the size of the code

of A in some �xed RAM model of computation. (Alternatively, A is a circuit and t is the size of

the circuit.) We want to �gure out qB; qE ; t as functions of n; �. Certainly we want them all to

be poly(n; 1=�), but we want to know exactly what is the polynomial here. The algorithm should

work for any x 2 f0; 1gn.

We would like actually something slightly more general. We would like to view qB ; qE; t as given,

and lower bound the success probability of A as a function of n; �; qB; qE ; t. But this problem does

not appear to have been studied.

2 Background

The context of Goldreich and Levin [5] is to �nd a hard-core predicate for any one-way function.

Given a length-preserving one-way function f : f0; 1g� ! f0; 1g�, de�ne F (x; r) = (f(x); r) where

jxj = jrj. This is also a one-way function. Now the claim is that hx; ri is a hard-core predicate for

1

2 Bellare

this function. This means that if there was an e�cient algorithm to predict hx; ri given f(x); r,

there is also an e�cient algorithm to compute a pre-image of f(x) given f(x). Probabilities here

are taken over the random choice of x and r. The technical part of the reduction amounts to the

above problem. The given algorithm for predicting hx; ri is Bx, and the oracle that can verify a

choice of x is implicit because we have f(x) and can compute f .

The proof in Section 4 is due to Racko�, using ideas of [1]. It is a simpli�cation of the original proof

of [5]. It is along the same lines as the proof in [7]. Two other excellent sources are Goldreich's

survey [3] and book [4], which present a proof using the same ideas and also present security

improvements. A recent paper of Levin [6] might have further security improvements. It would be

nice to read [3, 4, 6] and �gure out the improvements.

3 The high advantage case

The oracle Bx partitions the set of n-bit strings into two parts. The \good" strings are those inputs

on which the oracle is correct and the bad strings are those inputs on which the oracle is wrong.

It useful to name these sets:

Gd = f s 2 f0; 1gn : Bx(s) = hx; si g

Bd = f s 2 f0; 1gn : Bx(s) 6= hx; si g :

Our assumption can then equivalently be stated as

jGdj =
1 + �

2
� 2n and jBdj =

1� �

2
� 2n :

This will help us think about the problem.

Recall our problem is to �nd x given oracle access to Bx and EQx. To get some intuition, �rst

assume that Bx is always correct, meaning has advantage � = 1. In other words Gd = f0; 1gn,

meaning we simply have an oracle which given any n-bit string r returns hx; ri. How can we �nd

x?

For i = 1; : : : ; n let ei denote the string having a one in position i and zeros elsewhere. Observe

that x(i) = hx; eii. So it su�ces to make the queries e1; : : : ; en to Bx to compute x. We did not

even need the EQx oracle.

Now suppose the advantage of Bx is less than 1, but still very close to 1. Let � = 1 � �. This by

assumption is small, close to 0. A �rst thought is to proceed as above; we make queries e1; : : : ; en
to Bx. But the probability of success here could be zero. Even though Bx is correct on most inputs,

these particular inputs may not be among them. Meaning, even though Gd occupies a 1�� fraction

of f0; 1gn, it could still be true that some or all of the points e1; : : : ; en are in Bd.

If we want any chance of success, we must only invoke Bx on random points, so that we have a

chance of falling in Gd. This leads to the idea of using self-correction (cf. [2]). The algorithm of

Figure 1 takes as input any n-bit string z and attempts to compute hx; zi by invoking Bx only on

random points, each individually unrelated to z. Remember that arithmetic operations are modulo

two.

To analyze the algorithm, observe that the linearity of the inner product function tells us that

hx; zi = hx; z + ri � hx; ri for any n-bit string r. If r is random, so is z + r. The two are not

Goldreich-Levin Theorem 3

Algorithm SCBx(z)

r
R

 f0; 1gn

b1 Bx(z + r) ; b2 Bx(r)

Return b1 � b2

Figure 1: The SC algorithm that attempts to compute hx; zi given z.

independent, but it is still true that both, individually, are uniformly distributed, and that's what

we will use. The probability below is over the random choice of r made by the algorithm of Figure 1.

Pr [b1 � b2 6= hx; zi] � Pr [Bx(z + r) 6= hx; z + ri or Bx(r) 6= hx; ri]

= Pr [z + r 2 Bd or r 2 Bd]

� Pr [z + r 2 Bd] + Pr [r 2 Bd]

= 2 �

�
1

2
�

�

2

�

= 1� �

= � :

In other words, our algorithm is correct except with probability �. This is quite nice since its input

z is not necessarily random. In particular z might be in Bd.

To �nd x we use the same observation as above, namely that it su�ces to �nd the n bits hx; eii

for i = 1; : : : ; n. Do this by calling SCBx(ei) for i = 1; : : : ; n. (Note that each call results in a new

random choice of r.) The probability that all these n calls return the right answer is at least 1�n�.

So as long as � � 1=(2n), the success probability of our procedure is at least 1=2.

The requirement � � 1=(2n) translates to � � 1 � 1=(2n), meaning � is tending to 1 as n tends to

in�nity. We would like to do better and �nd x even when � is not only a constant, but perhaps

even an inverse polynomial in n.

Here's a thought. Above, we were sloppy in upper bounding the failure probability of the algorithm

SCBx(z). The way we did it is to say that we wanted both b1 and b2 to be correct; all other cases

we took to be failure. But actually, the output of the algorithm is also correct when both b1 and b2

are wrong, because we are working mod two. In other words, the bad case is not that at least one

of the two is wrong, but exactly one of the two is wrong, and this might have a smaller probability

of happening. Thus

Pr [b1 � b2 6= hx; zi] = Pr [z + r 2 Bd and r 2 Gd] + Pr [z + r 2 Gd and r 2 Bd] :

However r and z + r are not independently distributed, so the value of the terms above is unclear.

It turns out that there can be a value of z such that both probabilities above equal (1 � �)=2, in

which case the sum is 1� � = � just as before. (You can try to build this example as an exercise).

So this idea doesn't help after all. We need a di�erent algorithm.

4 Bellare

Algorithm Strong-SCBx(z; r1; : : : ; rm; b1; : : : ; bm)

sum 0

For i = 1; : : : ; 2m do

b[Si]
P

j2Si
bj

ci Bx(z +R[Si])� b[Si]

sum sum + ci

End For

If sum � 2m=2 then b 1 else b 0

Return b

Figure 2: The Strong-SC algorithm that attempts to compute hx; zi given a random sequence of n-bit

strings R = (r1; : : : ; rm) and auxiliary bits b1; : : : ; bm.

4 The general case

If k is any integer we let [k] = f1; : : : ; kg.

We introduce a parameter m which will eventually be set to c lg(n) for some constant c to be

speci�ed. If R = (r1; : : : ; rm) is a sequence of n-bit strings and S � [m] then we let R[S] =
P

j2S rj .

The sum here is performed componentwise modulo two, so the result is an n-bit string. Let

S1; : : : ; S2m be a listing of all subsets of [m] in some canonical order.

The goal of the Strong-SCBx algorithm of Figure 2 is the same as that of SCBx , namely to

compute hx; zi for a given input z 2 f0; 1gn. However our new algorithm has additional inputs. It

takes a sequence R = (r1; : : : ; rm) of n-bit strings which will be selected at random. It also takes

a sequence b1; : : : ; bm of bits. For the moment assume that bj = hx; rji for j = 1; : : : ;m. How we

can �nd these bits is a question we will address later; for now, just assume we managed to guess

the \right" values of the m inner products hx; r1i; : : : ; hx; rmi. In the algorithm, sum is an integer

counter and the \+" in \sum + ci" is integer addition; all other operations are the usual mod two

ones.

The idea behind the algorithm is the following. The linearity of the inner-product function tells us

that for any i = 1; : : : ; 2m we have

hx; z +R[Si]i = hx; zi+
X
j2Si

hx; rji :

If bj = hx; rji then the right-hand side is hx; zi +
P

j2Si
bj . Denoting the sum here by b[Si] we can

solve as follows:

hx; zi = hx; z +R[Si]i � b[Si] :

We want to use this equation to determine hx; zi. We will attempt to compute hx; z + R[Si]i by

calling Bx on input z + R[Si]. We will argue that with high enough probability over the choice of

the sequence R we have

hx; zi = Bx(z +R[Si])� b[Si]

Goldreich-Levin Theorem 5

Algorithm RecoverBx;EQx(1n)

For j = 1; : : : ;m do rj
R

 f0; 1gn End For

For i = 1; : : : ; 2m do

Let b1 : : : bm be the binary representation of i� 1

For k = 1; : : : ; n do

y(k) Strong-SCBx(ek; r1; : : : ; rm; b1; : : : ; bm)

End For

y y(1) : : : y(n)

If EQx(y) = 1 then x0 y

End For

Return x0

Figure 3: The Recover algorithm that attempts to compute x.

for a majority of the values of i 2 [2m]. Thus, taking a majority vote over the values of Bx(z +

R[Si])� b[Si] as i = 1; : : : ; 2m will yield a bit that with high probability equals hx; zi.

Once we have an algorithm that with high enough probability determines hx; zi for a given z, we

can compute x as before. Namely we would call this algorithm on e1; : : : ; en and thus retrieve x

bit by bit.

There are several issues to be dealt with in taking this high-level picture into an actual algorithm

to recover x. First, we must pin down what we mean by \high enough" probabilities in the above,

and analyze the Strong-SC algorithm to see that it accomplishes its task with such probabilities.

Second we have the issue of the bits b1; : : : ; bm that above we assumed magically to be the \right"

ones.

Let's deal with the second issue �rst. It is in solving this that we make use of the second oracle

EQx which, recall, tells us whether a given input is the hidden x or not. So far we have not used

this.

The full recovery algorithm is depicted in Figure 3. We begin by picking r1; : : : ; rm at random. The

key point is that m = O(lgn). So there are only polynomially many vectors b1; : : : ; bm to consider.

We simply try them all. For each choice of the vector b1; : : : ; bm we run the Strong-SC algorithm

n times, on the inputs e1; : : : ; en, to generate candidates for the bits of x. Each candidate x is

tested using EQx. Some choice of b1; : : : ; bm is correct |meaning bj = hx; rji for j = 1; : : : ;m| so

in that iteration of the loop we �nd x.

Notice the crucial role of the testing oracle EQx. Had that not been present, we would have 2m

candidates for x but no way to telling which of these is the right one.

The main claim for the analysis thus reduces to a claim about the Strong-SC algorithm when it

gets the right choice of the auxiliary bits. In that case we can upper bound the probability that it

fails to compute hx; zi as shown in the next lemma. Note the algorithm itself is deterministic; the

only random choice below is R = (r1; : : : ; rm).

6 Bellare

Lemma 1 Let M = 2m. Then for any z 2 f0; 1gn we have

Pr
h
Strong-SCBx(z; r1; : : : ; rm; hx; r1i; : : : ; hx; rmi) 6= hx; zi : r1; : : : ; rm

R

 f0; 1gn
i

�
1

M�2
:

We will prove this lemma later. Given this we can easily estimate the failure probability of the

Recover algorithm. The coin tosses here are those of the algorithm itself.

Lemma 2 Let M = 2m. Then

Pr
h
RecoverBx;EQx(1n) 6= x

i
�

n

M�2
:

Proof of Lemma 2: Due to the loop considering all possible values of b1; : : : ; bm we need only

consider the case where bj = hx; rji for j = 1; : : : ;m. In that case the Recover algorithm invokes

Strong-SC a total of n times, using n di�erent values of z but always the same values of r1; : : : ; rm
and b1; : : : ; bm. The probability that any of these calls returns the wrong answer is at most the

sum over k = 1; : : : ; n of the probability that that the k-th call returns the wrong answer. But the

probability of a wrong answer on any call is bounded as per Lemma 1.

Evaluating the complexity of the above procedure yields the following conclusion.

Theorem 3 Let m be a parameter and M = 2m. Then there is an algorithm A which makes at

most qB = nM calls to its Bx oracle, at most qE =M calls to its EQx oracle, has time-complexity

(execution time plus size of code) at most t = O(nM2) and success probability at least 1� � where

� = n��2=M .

To get success probability of 1=2 we would set M = 2n��2. In that case m = lg(M) = lg(n) +

2 log(��1) + 1. The running time of A is O(n3��4) and qB = O(n2��2) and qE = O(n��2).

What remains is to prove Lemma 1. That's the bulk of the work. We will �rst sketch the main

ideas. Then we will stop and recall some probability theory, and use that to conclude the proof.

We will de�ne a random variable Xi for i 2 [M] that takes the value 1 when the value of Bx(z +

R[Si])� b[Si] is correct, meaning equals hx; zi. (Under the assumption that b1; : : : ; bm are correct.)

The random variables X1; : : : ;XM are not independent. However, they satisfy a certain limited

type of independence: they are pairwise independent. This means that having the value of one

of them doesn't help predict the value of another, even though having the value of two of them

might help to predict others. This pairwise independent property is enough to prove Lemma 1

using Chebyshev's inequality.

To do all this we need to step back and recall some probability theory.

De�nition 4 Let X1; : : : ;XM : S ! R be real-valued functions on some sample space S. The

latter is equipped with a probability distribution under which X1; : : : ;XM are viewed as random

variables. We say that X1; : : : ;XM are pairwise independent if for every i; j 2 [M] with i 6= j and

every a; b 2 R we have

Pr [Xi = a and Xj = b] = Pr [Xi = a] � Pr [Xj = b] :

Goldreich-Levin Theorem 7

To bring this into context, here's how we set up the random variables for the proof of Lemma 1. Let

S be the set of all m-element sequences with entries from f0; 1gn. Put a uniform distribution on S.

(That corresponds to picking r1; : : : ; rm at random.) Now for i = 1; : : : ;M de�ne Xi: S ! f0; 1g

as follows, on any input R = (r1; : : : ; rm) 2 S{

Xi(R) =

(
1 if Bx(z +R[Si])�

P
j2Si
hx; rji = hx; zi

0 otherwise.

This can be simpli�ed by noting that the equality is true exactly when Bx(z+R[Si]) = hx; z+R[Si]i,

which in turn happens exactly when z +R[Si] falls in the good set of inputs. Thus

Xi(R) =

(
1 if z +R[Si] 2 Gd

0 otherwise
(2)

Our claim is that the random variables X1; : : : ;XM are pairwise independent. Why? If Si 6= Sj

then there is some string rk that belongs to one but not the other. Now given that operations are

modulo two, a sum involving rk is unpredictable from a sum not involving rk. So if we know that

z + R[Si] is in Gd, we still do not know whether z + R[Sj] is in Gd{ given z + R[Si], the value of

z +R[Sj] is still uniformly distributed.

You should probably play around a bit to convince yourself of this claim that X1; : : : ;XM are

pairwise independent, but this is the main idea.

Now let's go back to the general probability theory. Recall that if Y is a random variable then its

variance is Var [Y] = E
�
(Y � �)2

�
= E

�
Y 2

�
� �2 where � = E [Y] is the expectation of Y .

Lemma 5 Let X1; : : : ;XM : S ! R be pairwise independent random variables. Then

Var [X1 + � � �+XM] =Var [X1] + � � �+Var [XM] :

Proof of Lemma 5: Use the formula for the variance and the linearity of expectation to get

Var [X1 + � � � +XM] = E

h
(X1 + � � �+XM)2

i
�E [X1 + � � �+XM]2

= E [(X1 + � � �+XM)(X1 + � � �+Xm)]� (E [X1] + � � � +E [XM])2

= E

hP
i;j XiXj

i
�
X
i;j

E [Xi] � E [Xj]

=
X
i;j

E [XiXj]�
X
i;j

E [Xi] �E [Xj]

=
X
i

E

h
X

2
i

i
+
X
i6=j

E [XiXj]�
X
i

E [Xi]
2 �

X
i6=j

E [Xi] � E [Xj]

=
X
i

�
E

h
X

2
i

i
�E [Xi]

2
�
+
X
i6=j

(E [XiXj]�E [Xi] �E [Xj])

=
X
i

Var [Xi] +
X
i6=j

(E [XiXj]�E [Xi] �E [Xj]) :

The pairwise independence means that E [XiXj] = E [Xi] �E [Xj] whenever i 6= j. Thus the second

sum above is zero, and we are done.

8 Bellare

Lemma 6 Let X1; : : : ;XM : S ! R be pairwise independent random variables, let X = X1+ � � �+

XM , let A > 0 be a real number, and let � = E [X1] + � � � +E [XM]. Then

Pr [jX � �j > A] �
Var [X1] + � � �+Var [XM]

A2
:

Proof of Lemma 6: Chebyshev's inequality tells us that

Pr [jX � �j > A] �
Var [X]

A2
:

Now apply Lemma 5.

That's it. Now we use Lemma 6. Recall that in Equation (2) above we de�ned the random variables

X1; : : : ;XM : S ! f0; 1g that we need for the proof of Lemma 1, and said that they were pairwise

independent. Now observe that

E [Xi] = 1 � Pr [Xi = 1] + 0 � Pr [Xi = 0]

= Pr [Xi = 1]

= Pr [z +R[Si] 2 Gd]

=
1 + �

2
:

This is true because R[Si] is uniformly distributed in f0; 1gn. Now

Var [Xi] = E

h
X

2
i

i
�E [Xi]

2

= E [Xi]�E [Xi]
2

= E [Xi] � (1�E [Xi])

=
1 + �

2
�
1� �

2

=
1� �2

4
:

Let X = X1 + � � � + XM and � = E [X]. Linearity of expectation tells us that � = M(1 + �)=2.

Then observe that the probability that we want to bound in Lemma 1 is exactly

Pr [X < M=2] � Pr

�
jX � �j >

M�

2

�

�
Var [X1] + � � �+Var [XM]

(M�=2)2

=
M(1 � �2)=4

M2�2=4

�
1

M�2

as desired. That concludes the proof of Lemma 1.

Goldreich-Levin Theorem 9

Acknowledgments

Thanks to Ramarathnam Venkatesan for pointers and comments.

References

[1] W. Alexi, B. Chor, O. Goldreich and C. Schnorr, \RSA and Rabin Functions: Certain

Parts Are as Hard as the Whole," SIAM J. on Computing, Vol. 17, No. 2, 1988, pp. 194{209.

[2] M. Blum, M. Luby and R. Rubinfeld, \Self-testing/correcting with applications to nu-

merical problems," Journal of Computer and System Sciences, Vol. 47, 1993, pp. 549{595.

[3] O. Goldreich, \Three XOR lemmas: An exposition," Manuscript available at http://www.

wisdom.weizmann.ac.il/users/oded/papers.html. See Chapter 3.

[4] O. Goldreich, Modern cryptography, probabilistic proofs and pseudorandomness, Springer,

1999. See Appendix C.2.

[5] O. Goldreich and L. Levin, \A hard predicate for all one-way functions," Proceedings of

the 21st Annual Symposium on the Theory of Computing, ACM, 1989.

[6] L. Levin, \Randomness and non-determinism," Manuscript available at http://www.cs.bu.

edu/fac/lnd/research/publ.html.

[7] M. Luby, Pseudorandomness and cryptographic applications, Princeton Computer Science

Notes, 1996.

