arxXivimath/0404325v1 [math.CO] 19 Apr 2004

IEEE TRANSACTIONS ONINFORMATION THEORY, to appear 1

Asymptotic Improvement of the Gilbert-Varshamov
Bound on the Size of Binary Codes
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Abstract—Given positive integersn and d, let A2(n, d) denote the max-  as the Gilbert-Varshamov bound. This bound is used extelysiv

imum size of a binary code of lengthn and minimum distanced. The well- i the coding theory literaturé |311_ |37]’ and has been galﬂe
known Gilbert-Varshamov bound asserts thatAz(n,d) > 2™ /V(n,d—1), ized to numerous contexs [9] -I29i -IZOI 132].]38]

whereV(n,d) = ,‘f: (7;) is the volume of a Hamming sphere of radiusl. . . .
We show that, in fact, there exists a positive constant such that . Improv!ng upon t.he Gilbert-Varshamov bound asymptotjcall
. is a notoriously difficult task 137]139]. The breakthrougbrk
Az(n,d) >  Vnd-D) log, V (n, d—1) of Tsfasman-Vladui-Zink[[40] led to an asymptotic impesv
n,d—

ment of [1), but only for alphabets of size> 49 (see also the
wheneverd/n < 0.499. The result follows by recasting the Gilbert-var- recent papers$.[16]145]). For < 46, no asymptotic improve-
shamov bound into a graph-theoretic framework and using thefact that ~ ments upon[{]1) are currently knowin[48]. In fact, a well-kmow
the gorrespondlng _graph_ is locally sparse. Generalization and extensions conjecture (Cf. Goppd IZL9]) asserts that the binary ver@mf
of this result are briefly discussed. . = ) )

the Gilbert-Varshamov bound is asymptotically exact.

Keywords— Ajtai-Koml 6s-Szemegdi bound, asymptotic constructions, Nevertheless. for smatt andd. the size of best known bi-

binary codes, constant-weight codes, Gilbert-Varshamov dund, locally

sparse graphs, nonlinear codes;-ary codes. nary codes[[37, Chapter 5] often exceefds;(n, d) by a large
factor. Thus it is natural to ask whether the bouldd (2) can be
I. INTRODUCTION strengthened. Indeed, various improvements upon theybinar

i _Gilbert-Varshamov bound were presented (in chronological
Let Ay(n,d) denote the maximum number of codewords ier) by Varshamo\i[22], Hashifi[21], E&[L5], Tolhuiz&m]3
a code of lengt and minimum distance over an alphabet garg_Guritman-Simoni€ 5], and Fabris]17]. We review thes
with ¢ letters. The Gilbert-Varshamov bound, which asserts th%provements in detail in the next section. One of our main

q" results herein is the following theorem, which strengthitmes
Ag(n,d) > —3— - 1y (1) Gilbert-Varshamov bound using a technique quite diffefierh
Yico (D@=1) those of[5], [15], [17], [211],138], and142].

is one of the most well-known and fundamental results in Coﬁi_heorem 1. For z € R, let [2]* denote the smallest nonnega-
ing theory. In this paper, we focus on binary codes (althou%h ) TR * 9

. : ) ve integerm with m > z. Given positive integera andd,
an extension of our results to codes over an arbitrary akgtiab with d < n, lete(n, d) denote the following quantit
discussed in Section V). Thus we let S T L, g9 y

o () wn® 205 E )

=0 w=1 :"w+21',—d‘|+
denote the volume of a Hamming sphere of radium F.’, Then
and consider the binary version &f (1), namely
AL log,V(n,d—1) — logy v/e(n,d—1)
def 2n As(n,d) > .
As(n,d) =2 fovin,d) = —— (2 V(n,d-1) 10
( (n,d) V(n,d-1) 3)

This inequality was first proved by Gilbe[t 18] in 1952. Itsva L L
subsequently improved upon by Varsharrioy [42]. However, fol WWhat distinguishes Theordih 1 from prior improvements of
lowing the established terminology, we will refer B (1) a@) the G|Ibert-yarshamov bounq is the asymptotic behavioBf (
All the previously known explicit lower bounds oty (n, d) that
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Theorem 2.Letn andd be positive integers, witth/n < 0.499. and to constant-weight codes. Finally, we point out a nurober
Then there exists a positive constarsuch that intriguing open problems related to the results of this pape

n

S 2
Az(n,d) > “Vin,d-1)

log,V(n,d—1 5
og2V(n ) ®) Il. COMPARISON WITHPRIOR WORK

_ N In this section, we briefly review previously known (to us}im
Remark. The constant in Theorelth 2, the way it is stated abovigsovements of the Gilbert-Varshamov bourid (2), roughly in
may depend on the ratityn. However, if we only wish to claim chronological order, and establish the claim[df (4).

that [3) is true for all sufficiently large, thenc becomes an  The first improvement orf12) is due to Varshamov himself.

absolute constant, independent of betlandd. For more on varshamov showed ifi[42] thaty(n,d) > fv(n,d), wheré
this, see[[38). Also note that while the bound[ih (5) holds for

anyn andd with d/n < 0.499, it is useful only when the ratio def on—1
d/n is constant. If we allowl/n — 0 asn — oo, then better fv(n,d) = ollog, V(n—1,d—2)] (8)
bounds o4, (n, d) are knownl[6], [31],[[3B].
. and, moreover, there exist linear codes that attain thiathowe
So, how does Theord_ﬁl 2 relate tp the conjecture that the CHEW show that the ratigfy (n, d)/ fav (1, d) is upper bounded
bert-Varshamov bound is asymptotically exactdoe 2? This by a constant. Indeed. we have
depends on the interpretation. If one views the conjectare a%, '
dealing with the asymptotics ofz(n, d) itself, namely the size fv(n,d) V(n,d—1) V(n—1,d—1)
of the best binary codes, then it corresponds to the assédhiad fav(n, d) < V(n—1,d—2) =1 m
for all positived < 0.5, we have

where the equality above follows from the fact thdt, d—1) =

lim Az(n,dn) const (6) V(;L—l,d—l)-l—V(n—l,d—?). Expressing/(n, d) as the sum
n—co fav(n,dn) >t (%), we further obtain

where the constant might be a functionsofTheoreniP clearly ("=}
d—1

V(n—1,d-1)

shows that this is false: the limlitn,,—, oo A2(n, dn)/ fav(n, on) — L = 14 —= 9
does not exist for any. Indeed, the theorem implies that V(n-1,d-2) V(n-1, Ci_2)
= 1+ 10
logy Aa(n,d) > logs fav(n,d) + log(n) + const+ o(1) Z?:—g % (10)
(7) ~(d—
On the other hand, it is more common to interpret the conjec- < 1+ % (11)

ture as dealing with the asymptotics of the best possibéeafat

a binary code, namely the functid®(n, d) = log, A>(n,d)/n. where the inequality if{11) follows by retaining a singlente
In this case, the conjecture could still be true, since the tej the sum of D), namely the term corresponding te d—2.
log(n)/n will vanish forn — oc. Thusfy(n,d)/fav(n,d) < (6 +1)/6, wheres = (d—1)/n.

The rest of this paper is organized as follows. In the next anotherimprovement of]2) was proposed by Hashim in 1978.
section, we review the previously known improvements of thgashim [21, eq. (7)] proved the following. Let= [(d—1)/2]
Gilbert-Varshamov bound, with the aim of establishifif (4hnd letA(w; n, k, d) denote the minimum number of codewords
In Section lll, we recast the problem of estimatifg(n, d) into  of weightw in an(n, k, d) binary linear code. Thefi[21] shows

a graph-theoretic framework, and exprekgn, d) as the inde- that 4, (n, d) > 2¥, wherek is the largest integer satisfying
pendence number of a certain graph (Leriina3). We then re-

cover the Gilbert-Varshamov bound as a straightforward con A+t ¢ w

sequence of a simple bound on the independence number &f(n—1,d") — Z ( .)A(w;n, k,d) < 2"7F (12)

a graph (Propositidd 4). The key idea in the proof of Theorems wed imw—d' "

@ and? is surprisingly simple: the bound on the independence ) .
number used in Propositifth 4 can be improved upon, providiﬁ‘é"e“?dl =d—2. Unfortu“na_tel_y, the boun@(112) is non-explicit.
the graph at hand is locally sparse (TheoEem 7). In Sectipn Vashlm .I_2.L] writes that “this u_nproved bound requires the de
we show that this is, indeed, the case. Specifically, we derfrmination of the lowest possible value &fw; n, k, d), where

a simple closed-form expression for the number of edgesdin i = @ d+1,...,d—=2+1, in terms of the code parametersk,

relevant graph (Propositigh9), and then prove that thiplyra@ndd:” While various estimates ofl(w; n, k, ) are knownl[4],
[23], [25], [26], we are not aware of any results that can kerus

is sparse for all sufficiently large wheneverd/n < 0.4994 | . . : S
(Propositiol.IR). This completes the proof of TheorEms Band"” conjunction with KI]Z) to produce an gpr|C|t lower bound o
In Section V, we briefly discuss various extensions and generi2(7: d), at least rl1_ot without a substantial research effort.
izations of our results. In particular, we show that juselike N 1983, Elia[15] has extended the Varshamov bolihd (8) in
bounds of Gilbert[[T8] and Varshamdv]42], our bound can grdifferent way. Specifically, it is shown in[15, CorollarjtBat
proved “constructively” That is, there is an (exponentiale) “12(7-d) = fr(n, d), where

algorithm ‘.2;?] that actually ConStrl_JCtS codes satisfylfg We  1ysuany, fv(n,d) is defined a2*, wherek is the largest integer satisfying
also generalize Theordih 1 to arbitrary alphabets (TheloBm 2+ < 27 /v (n—1, d—2). The explicit form [B) is equivalent to this definition.
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def 2n—2

fE(nv d) =

Finally, the recent work of Barg, Guritman and Simonis [5]

max{2Uog2V(n73,d72)J 2Llog2V(n72,d73)j} contains various extensions and generalizations of the Var
’ shamov bound(8) as well as related prior work by Hashim [21],

Itis not difficult to see that, again, the ratfg (n, d)/ fav (n, d) Elia [15], and Edel[[14]. However, just as the Hashim bound,

is upper bounded by a constant. Indeed, writtHge:" (9] as most of the results of[5] are non-explicit — they provide hiet
V(n d)/2{log2V(n.,d)}' where{z} denotes the fractional part of0ds for constructing codes, but a substantial researchteffo

+ € R, we have would be required to convert them into an explicit lower bdun
on As(n,d). On the other handL]5] does contain the follow-

on—29{log;V(n—3,d=2)} on—1 ing generalization of Elia’s bound: for dll= 0, 1,...,d—1, if

fe(n,d) < V(n—3,d—2) < V(n—3,d—2) 20=1V (n—b, d—b—1) < 2"~*and there exists am—b,k—1,d)

code, thends(n,d) > 2*. If we use the Varshamov bourid (8)
to guarantee the existence of the-b, k—1, d) code, then this
reduces tds(n, d) > feas(n,d), where

This, in turn, leads to the following bound

fe(n,d) . V(n,d-1) . 8V(n—3,d—1
fav(n,d) = 2V(n—3,d—2) ~ 2V(n—3,d—2

R
) def
feas(n,d) =
We know from [I1) that/ (n—3,d—1)/V(n—3,d—2) < 1/4, 2"

whered = (d—1)/n. In conjunction with[IB), this implies that 2% max {2Llogzv(n—b—1,d—2)J7 2Llog2v(n—b,d—b—1)J}
fe(n,d)/ fav(n,d) < 4/6.

Tolhuizen [38] established yet another slight improvennt it ¢ serving as an optimization parameter (note thabfer1,
02)_ using Turan’s theoreni[41, Chapter4]. Specificallyl-To\ye recover the Varshamov bourfi (8), while for 2 this is pre-
huizen [38, p. 1605] shows thak (1, d) > fr(n,d)+ 1, where isely the Elia bound). Proceeding asll(11) 4ad (13) whbke t
fr(n,d) is the largest integer satisfying ing into account that’ (n, d—1) < 2071V (n—b—1,d—1), itis

on r(fr(n,d) —r) easy to see thafggs(n, d)/ fav(n,d) < 4/0.

+ > V(n,d—1 14
Frmd T g VD (9
with r being the remainder whet is divided by fr(n,d). If

we ignore the second term on the left-hand sid&df (14), thisn t
is precisely the Gilbert-Varshamov bourd (2). Otherwisés i We first recall some elementary terminology from graph tiaeor

Ill. GILBERT-VARSHAMOV BOUND
AND LOCALLY SPARSEGRAPHS

easy to see that A graphG consists of a set oferticesV (G) and a sef(G) of
on pairs of vertices, whose elements are cabeldes We hence-
fr(n,d) < Vind_1) — 2079 forth assume that both () and E(G) are finite sets. We use

n(G) ande(G) to denote, respectively, the number of vertices
< _ = fov(n,d) (14 o(1 and the number of edgesdn Two verticesu, v € V(G) aread-
V(n,d-1) 2n+2—1 av(m ) (1+o(1) jacentor neighborsn G iff {u,v} € E(G). The set of all neigh-

The latest improvement ofil(2) is due to Fabffig [17]. In faCtaors of a vertex is denotedV (v) and called theeighborhood

TV s of v. Thedegreeof a vertexv € V(G), denotedleg(v), is de-
Ea;g:élb)}j;c();/ei)tvlofr;e\(/\;bgyr\llst?ee:rg(m ). The first bound fined asdeg(v) = |N(v)|. A graphG is said to beA-regular if
R deg(v) = Aforallve V(G). AsetK C V(G) is acliqueif
def 2" — Z(n,d—1) every vertex ink is adjacent to all other vertices K. A clique
fri(n,d) = V(n,d—1) — Z(n,d—1) (15) consisting of3 vertices is driangle. A setZ C V(G) such that
’ ’ no two vertices ir¥ are adjacentis aimdependent sefA proper
andZ(n,d—w) is the volume of the intersection between twe-coloring of G is a partition ofV (G) into ¢ independent sets.
Hamming spheres of radids— w, whose centers are distanée The maximum number of vertices in an independent set isctalle
apart. The second boundis (n,d) > fr,(n,d), where theindependence numbef G, and denoted.(G).
" Then-dimensional hyperculs,, is defined as a graph whose
fro(n,d) 2 (V(n’ d-1) + I(n,d-2) ) (16) vertexsel/(H,) is the set of all binary vectors of length with
V(n,d—1) V(n,d=2) u,v € V(H,) being adjacent iffi(u, v) = 1, whered(-, -) is the
ObviouslyZ(n,d—2) < V(n,d—2). Thus it follows straight- Hamming dis.tancg. Note tha}t the graph distanijis equal
forwardly from [IB), (L) thafe, (n, d)/ fav (n, d) < (5+1)/6. to the Hamming distance. Given a minimum distatdce/e de-

2n 2n+2

Itis not difficult to see (cf. Lemni@8) that fine theGilbert graphas’,, to the powerd — 1).
dw Definition. Letn andd < n be positive integers. The corresp-
— w) (n—w onding Gilbert graphGg, is defined as followsV (Gg) = Fy'
I(n,d— = 2
(n w) Z [2;,1 (]) (i—j) and{u,v} € E(Gg) ifandonly if 1 < d(u,v) < d— 1.
—w j_[wti

Clearly, a binary code of length and minimum distance
In SectionV herein, we will show (ln a different Context)ith is an independent set in the Gilbert gr@b Converse|y, any
limy, .0 Z(n,d—1)/V (n,d—1) = 0. In conjunction with[Ib), independent set ifi; is a binary code of length and minimum
this immediately implies thate, (n, d) = fav(n,d)(1+0(1)). distance at least This proves the following.
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Lemma 3. Proof. The number of triangles containing a given vertex
Az(n,d) = a(Ge) an ., € V(@) is equal to the number of edges in the subgrapf¥ of
Lemmd3 makes it possible to recover the Gilbert-Varshamtiduced byN (v). Thus, for every € V(G), there are at most
bound [2) as a straightforward corollary to a simple bound drifiangles containing. Summing the number of triangles con-
the independence number of a graph. Since numerous distfi@étingv over allv € V(G), we count each triangle iy exactly
proofs of the GV bound (eg using Turan’s theorém [5_| Igg}hree times. Hence, the total number of tl‘langle§lr$ at most
aboundin the literature, it is somewhat surprising thastheple 7:(G) t/3. The theorem now follows from Lemriih g
proof below seems to have not been previously published.  Thus if we can show tha is locally sparse (that is, it sat-
isfies the conditions of Theordth 7 for a relatively small ealu
(18) of t), then we can improve upon the Gilbert-Varshamov bound
of Propositiofilt by a factor of abolutg, V' (n, d—1)/10.

Proposition 4. on
> -
aGe) > g

Proof. By definition, the Gilbert grap8¢ is A-regular with
A =V(n,d—1)—1. LetZ be amaximalindependent set i,
and let€ C E(Gg) be the set of edges with one endpoinfin
and the other i/ (Gg) — Z. SinceZ is an independet set, weln this section, we consider the Hamming sphere gréph
havel£| = A|Z|. SinceZ is maximal, every vertex df (Go)—Z  which is the subgraph of the Gilbert gragh induced by the
is adjacent to at least one vertex@ofand sq€| > n(Gg) — |Z|. neighborhoodV(0) of the vertexd € V(Gg). Clearly, the sub-
Thereforen(Gg) > |Z| > n(Gg)/(A+1) =2"/V(n,d—1). B graph induced in the Gilbert graph by the neighborhdd@)

- . of any other vertexw € V(G¢) is isomorphic toGs. Our goal
Remark. The trivial bounda(Gg) > n(Ge)/(A+1) proved in ; ; . :
Propositiof¥ is well known in graph theory. This bound can here is to determine how spar§g is. Namely, we would like

5 com utee(Gs), the number of edges ifis, and then deter-
strengthened somewnhat using Brooks’ theorgm [B], [41, . 20"~ thpe asymspt’otic relationship beq[wee(r; } and the num-
sinceGg is obviously neither a complete graph nor an odd cycl S

it must beA-colorable. The largest color class in a propeco- Ber o vertices ”Tgs' In view of Lemm4B an(iTheordm 7, this
) : : would then provide a lower bound oty (n, d) = «(Gg).

loring of G has to contain at least{Gc )/ A vertices. For convenience, let us wri = d — 1. Recall that[z]"
Note that the proof off{d8) requires very little informatiordenotes the smallest nonnegative integesuch thatn > =,

aboutGg. Thus we can easily improve updnl18) using the fagdr all = € R. Consider the following simple lemma.

that the neighborhood/ (v) of every vertexv in Gg is fairly )

sparse. First, we need a couple of well-known results almut femmas8. Letve V(Gs) be a vertex of weighw. Then the

cally sparse graphs. We say th@tis a graph with maximum 9€gree ofvin gs is given by

IV. How SPARSEIS THE SPHERE GRAPH?

degree at mosA if deg(v) < Aforallve V(G). & ominfwik N — w
Lemma 5. Let G be a graph with maximum degree at mast deg(v) = Z ) <j) ( i—j ) -1
and suppose that there are no triangle<in Then [t
(@) = n(G) log, A (19) Proof. Let u e V(Gs) Ige a verte)f ofGs distinct from v,
8A and suppose thatt(u) = ¢ for someie{1,2,...,d'}. Then

Lemmd® was first proved by Ajtai, Komlds, and Szemer@{u, v) = wt(u) + wt(v) — 2|x(u) N x(v)|, wherex(-) denotes
di [1] (but seel[B, p. 272] for a much shorter proof of the santbe support of a vector ifiy. Write j = [x(u) N x(v)|. Then
result). Subsequently, the boundlil(19) has been extemded f clearlyj < min{w, i}. Furthermorey andv are adjacent igs
graphs without triangles to graphs with relatively fewnges. if and only if d(u,v) = w4 i — 25 < d'. It follows that

In particular, a proof of the following lemma can be found, fo min{w,i}
example, in Bollobag]7, Lemma15, p. 296]. Z (w) (” - w) (20)
Lemma 6. Let G be a graph with maximum degree at madst j:(wﬂ;d/r J t=J
and suppose tha¥ contains no more thaf' triangles. Then ) _ _
is the number of vertices of weighthat are adjacent tg, for all
n(G) T i # w. Fori = w, we need to subtradtfrom the sum in[[20),
oG) > 10A <1Og2 A= 10g2< (G)> ) because the sum countstself. J

Observe that a graph has no triangles iff the neighborhood®joposition 9.
every vertex is an independent set. If the neighborhoodefyev

. X . . d’ d min{w,i} .
vertex is sparse, then the graph will have few triangles.s Thi e(Gs) = % Z (Z) Z Z (w) (n w) 1
=1 =1

simple observation is made precise in the following theorem J

, =]
=1, _[w+ti-d]+
Theorem 7.LetG be a graph with maximum degree at mdst =[]

and suppose that for att € V(G), the subgraph o€y induced Proof. SinceGs has(”) vertices of weightw, this follows

by the neighborhood of has at most edges. Then immediately from Lemm%8|
AG) > n(G) (10g2 A — Y, log, (%) ) Comparing the foregoing expression fdiGs) with the ex-

10A pression foe(n, d) in TheorenilL, we see thatn, d—1) is equal
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to e(Gs)/3. Thus Propositio]9 in conjunction with TheorEim Functions in what follows). We will derive a bound efGs) by

establish[{B). This completes the proof of Theofgm 1.
Although Propositiofl9 gives an exact expressiondi@s),
the asymptotic form of this expression is not immediatedacl
Thus we now turn to asymptotic bounds«(§s). Observe that
[V(Gs)| = V(n,d')—1, so that a complete graph &1 Gs) has

Q(V(n,d’)?) edges. In contrast, we will show that under certain_

conditions, there is an> 0 such that(Gs) = o(V (n,d')*7).
To this end, the following lemma will be useful.

Lemma 10.Letw andv be vertices i/ (Gs) and suppose that
wt(v) < wt(u). Thendeg(v) > deg(u).

Proof. It would suffice to prove that foralb € {2,3,...,d'},
we havedeg(v) > deg(u) if wt(u) = w andwt(v) = w — 1.
Moreover, by LemmEl8 the degree of a vertein Gs depends
on u only through its Hamming weighit(x). Thus we can
assume without loss of generality that

x(u) ={1,2,...,w}

Now considerN (u) and N (v), the neighborhoods af andv
in Gs. Itis easy to see that

N(u) = N(v) = {zeV(Fs)
N(v) = N(u) = {zeV(Fs)

and x(v) ={2,3,...,w}

c d(u,z) =d andz; =1}
: d(v,z) =d andz; =0}

wherex; denotes the first bit of the vector= (21, 22, ..., 2,)
inV(Gs). Letus denote the sedé(u) — N (v) andN (v) — N (u)
by A andB, respectively. Lep : F3* — FJ* be the mapping

w(x) = x+(100---0)

Note thatp(u) = v andyp(v) = u. We claim thatp(A) C B.
Indeed, let us writeo(z) = y = (y1,¥2, .-, yn). Evidently, if
d(u,x) = d" andz; = 1, thend(v,y) = d’ andy; = 0. More-
over, for allz € Fj* with z; = 1, the weight ofp(z) iswt(x)—1.
Thusifz € A, thenp(z) € V(Gs) unlesse = (100 - - - 0). How-
ever(100---0) € A, since the distance betweé&h)0 - - - 0) and
uwis givenbyw — 1 < d — 1 < d'. This proves thap(A) C B.
Sincey is a bijection orfF;*, the fact thatp(A) C B implies that
|A| < |B|. Hence|N (v)| > |N(u)|, and the lemma followsj

considering separately vertices of weight\d’ and vertices of
weight> M\d’ in Gs. Thus we write

d’

1 n\ _ ei(\n,d) + ea(An,d)
o(Gs) + 22() _ : (22)
with
er(An,d) E 3" (deg(v) +1)
veEV(GS)
wt(v)<Ad/
A —1 n d min{w,i} w n—w
EE ) e
w=1 =1 -:"w+'i2—d’—|+ J J
ea(Amd) =D (deg(v) +1)
veV(Gs)
wt(v)>Xd!
d’ n d’ min{w,i} w n—w
:z()z ()(_) (24)
wra’ \W/ i3 +\J t=J

o]

where the explicit expressions fef (A, n,d) and ez(A, n,d)
follow from Lemmd® and Propositifh9. Letbe a vertex in
V(Gs) with wt(v) = 1. Note that[ (1 + i — d’)/2] " = 0 for all
1 < d' — 1. Therefore, by Lemnid 8, we have

n—1

() ()
() <me

whered = d’/n and the last inequality follows from Lemral11.
Combining the definition oé; (A, n, d) in 23) with Lemm&ID
thus produces the following bound

d'—1

>

i=1
d’

>

i=1

deg(v) +1

<

Ad'—1
An.d) < 2nH2() ) < on(H:0)+H:00) (o5
61( y 1, ) wzl w ( )

Now, letv be a vertex i/ (Gs) with wt(v) = Ad’. Then, again

The rest of our asymptotic analysis involves the binary eBy LemmdB, the degree ofin G is given by

tropy function defined by

Hy(z) Lf _ xlogox — (1 — ) logy(1 — x)

forall 0 < < 1. In particular, we will make frequent use of
the following lemmall3L, pp. 308-310], which is a well-known

estimate for a sum of binomial coefficients.

Lemma 11.Letu € R, and suppose thatn is an integer in the
rangel < pun < 0.5n. Then
n
< gnHa(p)
(+)

Now, letA be a real number in the range < A < 1. To sim-
plify notation, we henceforth assume thlatc 0.5n and that\d’
is an integer (this obviates the need for numerpiysand | -|

un

5>

k=0

onHz(p)
—— (21)
8nu(l—p)

deg(v) +1 = hi(\,n,d) + ha(A\,n,d)

with .
dﬁf 1 7 w e—w
hi(\n,d) = leo<3>(l—]> (26)
i=1 j=
w—1 i
ona = E £ ()
z—ud’-l—lj:"#“ J t=J

>

= ;dw(zju) (?:lD (27)

where we have introduced the notatior= A\d’ andy =1 — A,
To upper-boundi; (\, n, d), observe that for all and; in the



6 IEEE TRANSACTIONS ONINFORMATION THEORY, to appear

double-sum ofl{&6), we have< i < pd’ < 0.5w and therefore where [3b) follows from the fact that for, <A <1andd < 0.5

(%) < (%) Thus the first exponent in[{34) is strictly less than the secondexp
pd’ i nent. We are now ready to prove the following proposition.
A n,d) < Z v new - . .
( = 1 i—3j Proposition 12. Lete and A\ be positive real numbers strictly
= ’ less thanl, with X > %,. Thene(Gs) = o(V (n,d’)*>~¢), pro-
_ id: (w> i (n_w> viding ¢ = d’/n satisfies the following two conditions:
iz \? 3=0 ' (1—¢) Hz(6) > H2(X9) (36)
ASHo (& 1—X6) Hy (22 d—N6/2
g 2n 2()\) + ’n( ) 2(1*)\5) (28) (1—5) H2(5) > )\5 + (1—)\5) HQ m (37)

To upper-boundiz(\, n, d) in @4), we will use the trivial es-
timate (%) < 2* = 277 for all j (in the case of[{27), this
estimate is actually not too far off). Thus

Proof. We estimatez(Gs) by combining [2ZR) with the upper
bounds in[[Zb) and(35) an (A, n, d) andes (A, n, d). It follows
that the ratice(Gs)/V (n, d')?>~¢ is upper-bounded by

ha(\,n,d) < 2" Z Z <Z j) e(Gs) o (H2(06) — (1-€) H2(5))
i=pd’ i—pd! - < e
Hd L[ i ] V(n,d)?=< (8nd(1-6))* "
271)\5 Z Z (n w) (29) N (TL)\(S + 1) 2n()\5 + (1—A5)H2(6;ji§2) - (1—8)H2(5))
v j=[ ] (8no(1-8))~"

Since the summation oin the second double-sum ¢f{29) isyhere we used Lemrfiall1 to bouldn, d’). It is clear that
up tow < 7, we can proceed with the upper bound by uniting § satisfies [36) £{37), then the right-hand side of the above

the two double-sums as follows expression tends to zero (exponentially fasthas co. J
Motivated by Propositiofn12, we now introduce the functions
nAé
ha(A,n,d) < 2 Z Z (l _]> fea(6) andge »(8) with domaind € [0, 0.5], parametrized by

i=pd [ impd ] and) and defined as follows

def

|5 For(8) % (1e) Ho(8) — Ha(A0)
nAs n—-w . _
-2 de;ﬂ JZO ( ) B0 \(0) X (1—e) Hy() — 26 — (1—/\6)H2<61_7/\/6\(/52>

where the equality ir({30) follows by a stra|ghtforward chan The two functiong’ » (§) andg..(5) are plotted in Figure 1 and
of variables. Finally, observing thét + ud') /2 < d’ — 3d' for  Figure 2, respectively, for — 0.000001 andA = 0.999. Fig-

alli < d', we get ure 3 shows a close-up view of these two functions (for theesam
& |43 ¢ and)) in the range’ € [0.499, 0.5]. It can be seen from Fig-
ho(A\,n,d) < 27N Z > ( ) ures 1, 2, and 3 that conditiorlS136) ahdl (37) of Propodifibn 1

are satisfied whenevef/n < 0.4994.

s_2s We are now ready to complete the proof of Theokém2. By

< n\ 2n)\6 + n(lf)\é)H2<ﬁ> 31) Lemmd3, A2(n,d) = a(Gg), whereGg is the Gilbert graph
defined in Sectiofll. The Gilbert graph is’regular graph on

Combining [ZB) and[{31) with the definition af(A,n,d) |V (Gg)| = 2" vertices with constant degree= V (n,d’) — 1.

in (Z4) and once again invoking Lemind 10, we obtain the fofhe subgraph ofi; induced by the neighborhood of any vertex

i=pd’+1  j=0

20

lowing bound in V(Ge) is isomorphic to the sphere gragh and has exactly
& e(Gs) edges. Therefore, by TheorEin 7, foralt 0, we have
e2(An,d) < (deg(v) +1) > (n> (32) (Gs) edd d
w=Ad’ 2" log,V(n,d") — Y,log, e(Gs)
> .
& Az (n,d) > Vin,d) 10
(hl(/\nd)+h2)\nd)z< ) (33)
=0 B 2n elog,V(n,d)
; ~ V(n,d) 20
< 2n <H2(6)+>\6H2(>\)+(1—>\6)H2(1Aa)) N 1og2V(n, d/)Qfs _ 10g26(g5))

n( Ha(8)+A6+(1-\6) Ho (212342
( 20V A=A 2 (5555 )) (34) By PropositiofiLIR, the ratie(Gs)/V (n, d')*~© tends to zero for

e = 0.000001, whenevew' /n < d/n < 0.4994 (cf. Figure 3).
2(8)FAG+(1—\8) Hy (72042 )) Therefore, the second fraction in parentheses becometiv/posi
(35) for all sufficiently largen, and Theoref2 follows.

+ nAd 2

< (nA§+1)2 (H
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L L L L L L L L L
0 0.05 0.1 015 02 0.25 03 0.35 0.4 0.45 05

Figure 1. Plot of the functionf. x(9) fore = 0.000001 andX = 0.999

= L L L L L L L L
0.499 04991 04992 04993 04994 04995 04996 0.4997 0.4998 0.4999 0.5

Figure 3. Close-up view of the functiong. () andg. x(9) in the
neighborhood o6 = 0.5 for e = 0.000001 and\ = 0.999

Remark. We note that the degree of a vertein Gs is related
to the so-calledntersection numbers}’, of the Hamming as-
sociation schem@{(n,2) — see [13] and[[31, Chapter 21] for

Remark. To get the best threshold elfn such that[(b) holds,
one should optimize the value of for a givene in Proposi-
tion[I2 (alternatively, one could try to directly find the niraxim

term in the triple-sum of Propositiéh 9). We have made no spe-
cial effort to optimize this threshold beyofdt99. However, we
believe that with an appropriate choicesof\ in Propositiofi IR

(or with other methods), one can get as close as desired to the
ultimate threshold/n < 0.5. ltis, therefore, surprising that for

§ = 0.5, the number of edges @s is very close td/ (n, d’')?.

Proposition 13.1f d’/n = 0.5, thene(Gs) > 0.25V (n,d’)?.

Proof. Letv € V(Gs) be a vertex of weight’ = n/2, and
let 1 denote the all-one vect@iil---1) in Fy*. Thenl + v is
another vertex of weigh’ in V(Gs). Given any other vertex
ueV(Gs), we haved(u, v) + d(u,1+v) = n = 2d/, so thatu
is adjacent to at least one oPr 1 + v. Thus every vertex igs
is adjacentto at least half of the vertices of weighiexcluding,
possibly, itself). This implies that

> (deg(v) +1) > %i (Z) (g) (38)

veEV(Gs) w=1
wt(v)=d’

By Lemmd3, all the vertices of weight have the same degree
in Gs. Thherefore, it follows fron{{38) that faveryv € V(Gs)
with wt(v) = d’, we have

deg(v > 5 Z( ) (39)

Now, by Lemm&ID, the degree of all other verticegig is
greater or equal to the degree of a vertex of weight This
essentially establishes the proposition. It remains toyaloout

the fact that the sum on the right-hand side [ofl (39) does not
include the tern(g) and about the extraon the left-hand side

of 39). We omit these tedious detailj.

Thus it appears that the sphere graph transitions abruptly
from being sparse to being nearly complet@’d@n = 0.5. We

do not have an intuitive “explanation” for this phenomeniun,

note that it is reminiscent of threshold phenomena for cadels
graphs observed in[47] and in_I33], respectively.

We also note that fod/n > 0.5, the problem of determin-
ing As(n, d) is essentially settled. Provided enough Hadamard
matrices existA;(2d, d) = 4d and Ax(n,d) = 2 |d/(2d — n)]
for all evend with 2d >n. This is the well-known result of
Levenshtein[[28], who constructed codes achieving thekPlot
bound[31, pp. 41-43] from Hadamard matrices.

V. GENERALIZATIONS AND OPEN PROBLEMS

a detailed description df((n,2). Specifically, given any two The well-known proofs by Gilber]18] and Varshamévi[42] of

vectorsu, v € Fy* with d(u, v) = w, the intersection numbet’,
is defined as the number of vectars F;* such thati(z,u) =4

andd(z,v) = k. Thus the suni{20) can be written as

Piotpiit -+ pia

the bounds in{2) an@I8), respectively, are “constructimghat
they provide simple (but exponential-time) algorithms tm<
struct codes whose parameters meet or exceed the corrésgond
bounds. Moreover, Gilbert’s “constructive” argumentl[ s
been extended to quite general contexis [20], [88], [4G]jaithe

An explicit expression fop;’; is givenin [31, p. 656]. However, so-called altruistic algorithm (which is also exponentiaie).
the proof of Lemmpl8 above, which does not use the intersectio We would like to point out that the bound of TheodlEm 2 is

numbers, appears to be simpler and shorter.

“constructive” in the same sense &sl[20[.1[38].1[42], and].[46
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Hofmeister and Lefmann_[22] provide an algorithm whichcenting, s to a fixed vertex € V (G, s) of weightwt(v) = w
given anyA-regular graphG with at mostn(G) A2~ triangles, as follows
finds an independent set of size at le@$t(G) log,(A)/A)

in G. By the results of Section |V, the Gilbert gragi, con- * < w w—j o)k (W 1yi—c 41
tains at mosO (n(Gg)A%~¢) triangles whenevet/n < 0.499. _ Z ; (@=2)"( . c (g—1) (41)
Thus, when applied to the Gilbert gragh;, the Hofmeister- =0 k=b

Lefmann algorithm[[22] will produce codes satisfyild (5her
Hofmeister-Lefmann algorithm runs in time that is polynami
in the size oG but, of course, exponential in the code length

wherea, b, andc are as defined in the theorem. Foe w, we

again need to subtrattfrom the sum in[(4l1) since the sum then

countsw itself. Enumerating over all possible valuesipfve
Up to now, for the sake of brevity, we have focused excldind that the degree afin G, s is given by

sively on binary codes. Nevertheless, it should be clear tha

Theorem§!l anfll2 can be generalized to arbitrary alphabets oi w—7j\ [n—w -
sizeq, whereq need not even be a prime power. Here, we give < >< k ) <Z _ >(‘1 2) (¢-1)"° -1
a generalization tg-ary alphabets of Theordh 1. i=15=0k=b 42)

Theorem 14.Letq, n, andd be positive integers witth < nand The total number of vertices of weightin G, s is (Z) (g—1)v.
q = 2. Define the volume of@cary Hamming sphere of radius  Combining this with [4R) produces an expressiond(¥, s),

asVy(n,d) = X0, (") (g—1)", and let and it is easy to see thaf(n,d—1) = e(G,.s)/3. I
1 a a—j 1 2 ( 1ywi—e Remark. We could have used the intersection numbsgfsof
def ZZZZ T n q 4 ' . the Hamming association scherir, ¢) in the proof of The-
S e e ALY ol (nte—w=1)! " gren{Ta. Specifically, the sum iE{41) can again be written as
Vq(n,d) pio +piy + -+ piy. Therefore
- 6 / / /
whereq < min{w, i}, ¢ j+k, andbis the smallest nonnega- e(Gq,s) Z Z Z ( ) pi; (q—1)"
tive integer that is greater or equal {av+:) — j —min{d+j, n}. w=1i=1 j=1

Then
with the convention thaty’; = 0 whenw > i+ j. A formula for

the intersection numbers of theary Hamming schem®& (n, q)

(40) may be found in[Ib, eq. (2)]. While the resulting expression f
eq(n, d) is shorter than its counterpart in Theolerh 14, we prefer

Proof. Let A be an alphabet witly letters. We define the the latter since it is more explicit.

g-ary Gilbert grapty, ¢ as before, namely'(G,.c) = A™ and |, the original version of this paper, we have left the asymp-

{u, v} € E(Gy c) if and only if/l < d(u,v) < d'. ThenGoe  yoric investigation of the bound in Theor€m 14 as an open{rob
is A-regular withA = V;(n,d’) — 1, and Theoreill7 applies.|oy and conjectured that it should lead to
It remains to count the number of edges in the graphs induced

in G, ¢ by the neighborhoods of its vertices. Without loss of q"

generality, we can call any one of the letters4fzero,” and Ay(n,d) > ¢ V,(n,d—1) logyVy(n,d—1) (43)

consider the grapl, s which is induced in the-ary Gilbert o

graph by the neighborhoali (0) of the vertex0 € A™. for some positive constant This conjecture has been proved in
Letu = (u1,ug,...,u,)andv = (vi,ve, ..., v,) betwover- the recentwork of Vu and Wii[43]. Specifically, Vu and Wul[43]

tices ofG, s with wt(v) = w andwt(u) = i (observe that Ham- show that ifd/n < (¢—1)/q, then [4B) holds for a constant

ming weight is well-defined, once we have identified@.4). that depends on the ratiyn. They also give an explicit, though

q" log,Vy(n,d—1) — logy/eq(n,d—1)
Ay(n,d) > -
a7, d) Vo(n,d—1) 10

Let et rather elaborate, expression foin terms ofd/n.
{0 w = w00 # 0,00 # 0} Our general approach can be extended to many other situa-
def i izati i -
Hl w2 v, £ 0,0y £ 0}’ tions where generalizations of the Gilbert-Varshamov looane

currently used. We give just one concrete example.
It is obvious thaty < min{w,i}. Further, if;j is already fixed, Let A(n,2d,w) denote the the maximum number of code-
then clearlyk < min{w,i} — j. Moreover,w — k — j is the words in a binary code of length, constant weightv, and
number of positiong such thaty, # 0 andu; = 0. This number minimum Hamming distancgd. Levenshtein[[29] has general-
cannot be greater than— wt(u) = n — ¢, which implies that ized the Gilbert bound]?2) to constant-weight codes. It @i

k = (w+i) — j — n. Finally, it is easy to see that in [29] that
dlu,v) = w+i—2j—k n
o d (. w) (2)
so that the vertices andv are adjacent i, s if and only if ~ A(n,2d,w) > = —— (44)
k > (w+i)—j—(d’+j). Putting all this together, we can enume- V(n,d-1,w) Z ( ) ( )
rate the total number of vertices of weigh# w that are adja- o\ i
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whereFy(n,w) is the set of binary vectors of lengthh and codes|[1ll, Section 12.1], to codes correcting arbitranyrgrat-
weightw andV (n, d, w) is the volume of a sphere of radids terns [30], to runlength-limited codes 124], and to moreeyah
in the Johnson metric. Using the same approach as in Theoramsstrained system5_[32]. The general approach introdinced
@ andI#, we can improve upon the boundid (44) as follows. this paper should work whenever an underlying “Gilbert ¢ap
fgan be defined, and happens to be locally sparse.

Our results herein have applications outside of codingrtheo
as well. For example, the following problem arises in thelgtu
of scalability of optical network$ [36]. Le(,, be then-dimen-

b sional hypercube, defined in Sectionlll. What is the minimum
o, €N <”_w_k) (k ) (k ) ( w—k ) (45) numbery,(n) of colors needed to color the vertices ™, so

g ! i—1) \j—1) \it+j—k—I that vertices at distance d from each other have different col-
ors? Ngo, Du, and Graharn |35] have recently established the
following bound

Theorem 15.Letn, d, andw be three positive integers such tha
d < w < n/2. For positive integers, j, k, all less than or equal
to w, definep} ; as follows

l=a
forall k < i+ j, where

def

= max{0,i—k,j—k,i+j—w} xa(n) < 2lesV(n—ld-1)]+1

a
b % min{i,ji+j—kn—w—k} 2
2J ’ = 2{log2V(n71,d71)} ‘/(’rL—l7 d—l) (47)

Setpfj = 0 for k > i + j, and define the following quantity ) ] ]
- In fact, this follows immediately from the Varshamov boull

dof 1K o (n—w since given anyinear binary codeC, assigning different col-
e(n,d,w) = 6 Z Z Z ( ) ( i )pﬁj (46) ors to the cosets of in F;* produces a valid coloring. While
i=1j Theorem§ll anfl 2 improve updd (8), unfortunately, we do not
Then know whether there exid¢inearcodes that attaifil3) and/dd (5).
Nevertheless, we can still improve updnl(47), as follows: if

A(n, 2d, w) B, w) d/n < 0.499, then there exists a positive constarguch that
Vin,d—1,w) n.d)
V(n,d
. 1og2V(n7 d_la w) B 1Og2 V e(na d_17 w) Xd(n) se lOgQV(TL, d) (48)

10
This uses a result of Alon, Krivelevich, and Sudakov [2], who

_ ) _ show that locally sparse graphs with maximum degkezan be
Proof. The underlying “Gilbert graphyy can be defmed. as colored using)(A/ log A) colors. Specifically, le6 be a graph
follows: V(G) = Fa(n,w) and {u,v} € E(G) if and only if  yith maximum degree\ such that the number of edges in the
2 < d(u,v) < 2d'. Now fix a vertex: € V(G) and consider the sypgraphs induced i by the neighborhood of any vertex is
graphGs thatis induced iy by the neighborhood/(z). Clear- 4t mostA2/f. Then it is proved in[]2, Theorem1.1] that the
ly, all such graphs are isomorphic. The numbefrsin @5) are  chromatic numbeg (G) of G satisfiesy(G) < ¢1 A/ log, f for
precisely the intersection numbers .of the Johnson assmtiatygme positive constant. Since the Gilbert grapl;, defined
schemel[31, p.665]. It follows that if is a vertex ofGs such in Section I, isH,, to the power(d — 1), it should be clear that

thatd(z,v) = 2k, then the degree afin Gs is given by Xa-1(n) = x(Gc). The Gilbert grapl§g has maximum degree
o A = V(n,d—1) — 1. Moreover, we have shown in the previ-
deg(v) = Zzpk _ ous section that this graph is locally sparse@fis the graph
1,J

induced inG¢ by the neighborhood of any vertexc V (Gg),
thene(Gs) < ca A?/V(n,d—1)% for e = 0.000001 and some
Hencee(Gs) = 3e(n,d—1,w), wheree(n, d, w) is the quantity positive constants, providedd/n < 0.499. Combining this
defined in[[4b). The desired bound din, 2d, w) now follows, with [2, Theorem 1.1] establishds{48).

as before, from Theorefh 4 Finally, we would like to point out some questions concegnin

We leave the asymptotic analysis of Theofein 15 as an opemeoremEll arld 2 that remain open. Our proof of these theorems
problem for future research. gives no hint of linearity. Nevertheless, we ask: are thieweal

In the original version of this paper, we have also suggesteddes whose parameters sati§lly (5)? It is conceivable thdt-a
the following problem: generalize the results of Theotémd a able modification of the Varshamdv42] argument for constru
TheoreniP to lattices and sphere-packings, where the asunieg a parity-check matrix could produce such codes. It id wel
part of the Gilbert-Varshamov bound is the Minkowski-Hlavkknown that a random (linear) code meets the Gilbert-Varsivam
theorem|[[1P],[[3D]. This problem was recently solvedlinl [27bound with probability approachingasn — oo. Thus we ask:
Specifically, Krivelevich, Litsyn, and Vardy [27] show thas- do random codes also meet the improved version of this bound
ing graph-theoretic methods similar to those of Sectigrthié in TheorenlP? Progress on this question was recently raporte
classical Minkowski bound[34] on the density of sphere packy Cohen|[1D]. Of course, the most interesting questionla$ al
ings inR™ can be also improved by a factor that is lineanin  whether the ternibg n in @) can be further improved to a linear

Other interesting problems for future work would be the exerm. In other words, it it true that the Gilbert-Varshamouhd
tension of Theorenid 1 afitl 2 to spherical cofes [44], to cogerion the rate of binary codes is asymptotically exact?

i=1j=1
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