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Abstract

Impagliazzo and Wigderson [IW97] have recently shown tfiat i
there exists a decision problem solvable in tigf&™ and hav-
ing circuit complexity2*(™) (for all but finitely manyn) thenP =
BPP. This resultis a culmination of a series of works showing-con
nections between the existence of hard predicates and iterse

of good pseudorandom generators.

Luca Trevisah

Salil Vadhah

1 Introduction

This paper continues the exploration of hardness versuioran
ness trade-offs, that is, results showing that randomiigatithms
can be efficiently simulated deterministically if certaoneplexity-
theoretic assumptions are true. We present two new appesach
to proving the recent result of Impagliazzo and Wigdersgqr]
that, if there is a decision problem computable in ti2®%"™) and

The construction of Impagliazzo and Wigderson goes through having circuit complexity2*™ for all but finitely manyn, then
three phases of “hardness amplification” (a multivariatéy/po- P = BPP. Impagliazzo and Wigderson prove their result by pre-
mial encoding, a first derandomized XOR Lemma, and a second senting a “randomness-efficient amplification of hardndsssed
derandomized XOR Lemma) that are composed with the Nisan— on a derandomized version of Yao's XOR Lemma. The hardness-

Wigderson [NW94] generator. In this paper we present twe dif
ferent approaches to proving the main result of Impaglisazd
Wigderson. In developing each approach, we introduce netw te
nigues and prove new results that could be useful in futupzonre-
ments and/or applications of hardness-randomness tifgle-o

Our first result is that when (a modified version of) the Nisan-
Wigderson generator construction is applied with a “mildhard
predicate, the resultis a generator that produces a disitsibindis-
tinguishable from having large min-entropy. An extractan¢hen
be used to produce a distribution computationally indgatishable
from uniform. This is the first construction of a pseudoramdyen-
erator that works with a mildly hard predicate without dohmeyd-
ness amplification.

We then show that in the Impagliazzo-Wigderson constractio
only the first hardness-amplification phase (encoding witltim
variate polynomial) is necessary, since it already givegéuguired
average-case hardness. We prove this result by (i) ettaigdis
connection between the hardness-amplification problenadist-
decoding problem for error-correcting codes based on paultte
polynomials; and (ii) presenting a list-decoding algamtthat im-
proves and simplifies a previous one by Arora and Sudan [AS97]

*The full version of this paper appears as [STV98].
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amplification procedure is then composed with the Nisan-efigon
(NW) generator [NW94] and this gives the result. The hardnes
amplification goes through three steps: an encoding using-mu
variate polynomials (from [BFNW93]), a first derandomize®R
Lemma (from [Imp95]) and a second derandomized XOR Lemma
(which is the technical contribution of [IW97]).

In our first result, we show how to construct a “pseudoentropy
generator” starting from a predicate with “mild” hardneBaughly
speaking, gpseudoentropy generatdakes a short random seed
as input and outputs a distribution that is indistinguidaaiom
having high min-entropy. Combining our pseudoentropy getoe
with an extractor, we obtain a pseudorandom generator. Interest-
ingly, our pseudoentropy generator is (a modification 0 W
generator itself. Along the way we prove that, when built ofit
a mildly hard predicate, the NW generator outputs a distigiou
that is indistinguishable from having high Shannon entrepgsult
that has not been observed before. The notion of a pseudpgntr
generator, and the idea that a pseudoentropy generatoreczaonb
verted into a pseudorandom generator using an extrace e
to Hastad et al. [HILL98]. Our construction is the first construc-
tion of a pseudorandom generator that works using a mildig ha
predicate and without hardness amplification.

We then revisit the hardness amplification problem, as censi
ered in [BFNW93, Imp95, IW97], and we show that the first step
alone (encoding with multivariate polynomials) is suffiti¢o am-
plify hardness to the desired level, so that the derandank@R
Lemmas are not necessary in this context. Our proof is based o
a list-decoding algorithm for multivariate polynomial @xand
exploits a connection between the list-decoding and theneess-
amplification problems. The list-decoding algorithm désed in
this paper is quantitatively better than a previous one hyrdand
Sudan [AS97], and has a simpler analysis.

' To be accurate, the teraxtractorcomes fron [NZ96] and postdates the paper of
Hastad et al. [HILL98].



An overview of previous results. The works of Blum and
Micali [BM84] and Yao [Yao82] introduce the notion of a cryp-
tographically strong pseudorandom generator (csPRG) hod s
how to construct pseudorandom generators based on therméast
of one-way permutations. A csPRG is a polynomial-time atgor
that on input a randomly selected string of lengthproduces an
output of lengthn that is computationally indistinguishable from
uniform by any adversary goly(n) size, wheres is an arbitrar-
ily small constant. Yao also observes that a given polynbtirize
randomized algorithm can be simulated deterministicadiing a
csPRG in time™ - poly(n) by trying all the seeds and taking the
majority answer.

In a seminal work, Nisan and Wigderson [NW94] explore the
use of a weaker type of pseudorandom generator (PRG) in toder
derandomize randomized algorithm. They observe thathfptir-
pose of derandomization, one can consider generators dabipu
in time poly(2") (instead ofpoly(t)) wheret is the length of the
seed, since the derandomization process cycles throutjtealeeds,
and this induces an overhead fac?dranyway. They also observe
that one can restrict to generators that are good againstsaties
whose running time is bounded by a fixed polynomial, instefad o
every polynomial. They then show how to construct a pseudo-
random generator meeting this relaxed definition under eeak-
sumptions than those used to build cryptographically stroseu-
dorandom generators. Furthermore, they show that, undef-a s
ficiently strong assumption, one can build a PRG that usedssee
of logarithmic length (which would be impossible for a csPRG
Such a generator can be used to simulate randomized algsrith
in polynomial time, and its existence impli€s= BPP. The con-
dition under which Nisan and Wigderson prove the existerfce o
PRG with seeds of logarithmic length is the existence of ésitat
problem (i.e., a predicat®: {0,1}" — {0, 1}) solvable in time
20 such that for some positive constanto circuit of size2<™
can solve the problem on more than a fractigi2 + 27" of the
inputs? This is a very strong hardness requirement, and it is of
interest to obtain similar conclusions under weaker assiomg

An example of a weaker assumption is the existencenoidly
hard predicate. We say that a predicate is mildly hard if for some
fixed e > 0 no circuit of size2™ can decide the predicate on more
than a fractionl — 1/poly(n) of the inputs. Nisan and Wigder-
son prove that mild hardness suffices to derive a pseudonando
generator with seed ab(log? n) length, which in turn implies a
quasi-polynomial deterministic simulation 8PP. This result is
proved by using Yao's XOR Lemma [Yao82] (see, e.g., [GNW95]
for a proof) to convert a mildly hard predicate ovelinputs into
one which has input size” and is hard to compute on a fraction
1/2 + 279%™ of the inputs. A series of subsequent papers attacks
the problem of obtaining stronger pseudorandom generatars
ing from weaker and weaker assumptions. Babai et al. [BFNW93
show that a predicate @forst-casesircuit complexity2*(™) can be
converted into a mildly hard onie.Impagliazzo [Imp95] proves a
derandomized XOR Lemma which implies that a mildly hard pred
icate can be converted into one that cannot be predicted aa mo
than someconstantfraction of the inputs by circuits of sizg™.
Impagliazzo and Wigderson [IW97] prove that a predicaténhie
latter hardness condition can be transformed into one teatsrthe
hardness requirement of [NW94]. The result of [IW97] relgsa
different derandomized version of the XOR Lemma than [Injp95
Thus, the general structure of the original constructioNisiin and
Wigderson [NW94] has been preserved in most subsequentswork
progress being achieved by improving the single components
particular, the use of an XOR Lemma in [NW94] continues, @lbe

2This has to be true for all but finitely many input lengihs
3In fact the result of [BFNW93] was somewhat weaker, but itdsily extendable
to yield this result.

in increasingly sophisticated forms, in [Imp95, IW97]. kikise,
the NW generator and its original analysis have always bsed u
in conditional derandomization results sirfcdzuture progress in
the area will probably require a departure from this obseresof
the NW methodology, or at least a certain amount of revisitedf
its main parts.

In this paper, we give two new ways to build pseudorandom
generators with seeds of logarithmic length. Both appready-
pass the need for the XOR Lemma, and instead use tools (such as
list decoding, extractors, and pseudoentropy generatbeg)did
not appear in the sequence of works from [NW94] to [IW97]. For
a diagram illustrating the steps leading up to the resul{$#97]
and how our techniques depart from that framework, see Eifjur
Both of our approaches are described in more detail below.
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Figure 1: A comparison of our approach with previous onesu-Do
ble arrows indicate our results.

INW94]

Pseudorandom Generato

A Pseudoentropy Generator. Nisan and Wigderson show
that when their generator is constructed using a very hardwverage
predicate, then the output of the generator is indistirftatite from
the uniform distribution. It is a natural question to ask whap-
pens if there are stronger or weaker conditions on the pagelidn
this paper we consider the question of what happens if trdiqate

is only mildly hard. Specifically we are interested in whetégpo-
nential average-case hardness is really necessary fat giseu-
dorandom generation. In this paper we first show that, when a
mildly hard predicate is used in the NW generator, then tb&rgts

a distribution having high Shannon entropy that is indigtiish-
able from the output of the generator. Our main result is tihei,
for a mildly hard predicate, a modified version of the NW gener
ator has an output indistinguishable from a distributiothwiigh
min-entropy. Such a generator is essentially a “pseudopyiyen-
erator” in the sense of Hastad et al. [HILL98]. The intuitizehind
our proof is that if a predicate is hard to compute on more than
fraction1 — ¢ of the inputs then there should be some subset of the
inputs of densityy on which the predicate is very hard — this in-
tuition is made precise by a result of Impagliazzo [Imp95lieDo
the high hardness, the evaluation of the predicate in a ranmont

of this set will be indistinguishable from a random bit. Th&/N
generator constructed with a predicd&evorks by transforming an
input seed; into a sequence of points, . . ., z,, from the domain
of P; the output of the generator is théM(z1)P(z2) - - - P(Zm).
For a random seed, each of the pointss uniformly distributed,
and so we expect to typically generate: points from the hard
set, so that the output of the generator looks like havimgbits of

4The techniques of Andreev et al. [ACR97] are a rare exception they yield
weaker result than the ones of [IW97].



randomness, that is, it is indistinguishable from some rodietri-
bution having (Shannon) entropyn. The generation of the points
x1 - - Ty can be modified so that the number of points landing in
the hard set is sharply concentrated around its expectee ¥at.
The output of the modified generator is then indistinguisihélom
having high min-entropy. When our generator is composet wit
sufficiently good extractdr(such as the one in [Tre98]) then the re-
sult is a pseudorandom generator. This is the first consbruct a
pseudorandom generator based on mild average-case hattiaes
does not rely on hardness amplification. It is also the firptiag-
tion of the notion of a pseudoentropy generator to the caostm

of PRG in the Nisan—Wigderson sense.

Remark 1 While in this paper we analyze for the first time the
Nisan-Wigderson generator undemaeakerassumption than the
one originally considered in [NW94], there has also beenesom
work exploring the effect otrongerassumptions on the predicate.
Impagliazzo and Wigderson [IW98] show that if the predidads
certain additional properties (such as “downward selfacsoility”)
then one needs only aniform hardness assumption on the pred-
icate (rather circuit-complexity assumption). Arvind akdbler
[AK97] and Klivans and van Melkebeek [KvM98] show that if the
predicate is hard on average foondeterministicircuits, then the
output of the generator is indistinguishable from uniforon fion-
deterministic adversaries. Therefore it is possible t@ddomize
classes involving randomness and nondeterminism, suckvas
Trevisan [Tre98] shows that if the predicate is chosen renigo
from a distribution having certain properties, then thepotiis sta-
tistically close to uniform. This yields the construction of extrastor
that we use in our generator.

The Connection with Polynomial Reconstruction. Our
second result deals with the polynomial reconstructiorblenm
and its connection to amplification of hardness. In the polyn
mial reconstruction problem we want to design an efficiemt ra
domized algorithm that, given oracle access to a funcfiahat
hasé-agreemerit an unknown low-degree polynomigl(-), com-
putesp(:) on every input with high probability over its internal
coin tosses. This problem has been studied for its appicsiti
to program checking, average case hardness results foetheap
nent, and random self-reducibility of complete problemsigh
complexity classes [BF90, Lip89, GLI'®1, FF93, GS92, FL96,
CPS99].

The applicability of polynomial reconstruction to hardse®r-
sus randomness results was demonstrated by Babai et al VIBBN
They show that the existence of a polynomial reconstrugiioge-
dure implies that one can convert a worst-case hard predintd
one which is mildly average-case hard by encoding it as a-poly
nomial. As in [NW94, Imp95, IW97] one can further amplify the
hardness using XOR Lemmas. It is intuitively clear that arsger
reconstruction algorithm would imply a stronger hardnespli-
cation result and it could be used in place of the XOR Lemma. Un
fortunately, some calculations show that a polynomial nstaic-
tion algorithm would have to work with = o(1) in order to be a
viable surrogate of an XOR Lemma, but if we have access to@ fun
tion f with 6-agreement to some polynomia(-), whereé < 1/2,
then p(-) is not uniquely determined and the polynomial recon-
struction problem is ill-posed. On the other hand even fayve
small values ob, there is only a small number of polynomials that
ared-close to any given functiorfi, and one can conceive a gener-
alized reconstruction procedure that having oracle acmegout-
puts a small number of efficient programs so that every patyiab

5 An extractor is an efficient algorithm that on input a disatibn sampled from a
distribution with high min-entropy has an output that igtistecally close to uniform.

SWe say that a functiorf hasé agreement with a function if f andg are equal
on a fraction at least of their domain.

that isé-close tof is computed by one of these programs. Finding
a generalized reconstruction procedure of this form is sigarof
the “list decoding” problem for error-correcting codesdtigh we
will not use the phrase “list decoding” in most of our expimsi).
Such a generalized reconstruction procedure has been fgivdre
first time only very recently by Arora and Sudan [AS97]. Thepr
cedure of Arora and Sudan has a complicated analysis thas rel
on their difficult analysis of the low-degree test for the ghily
noisy” case. In this paper we present a reconstruction ploee
that works for an even wider range of parameters and has a much
simpler proof. We also show that our reconstruction proceds
strong enough to imply the hardness amplification resultw®7]
(but even the weaker procedure of Arora and Sudan [AS97]avoul
have sufficed). It has been pointed out to us that the commecti
between (generalized) polynomial reconstruction andriess am-
plification has also been observed by Avi Wigderson [Wig3&] a
S. Ravi Kumar and D. Sivakumar [KS98].

2 Preliminaries

We writeU,, for the uniform distribution o{0, 1}". Thestatistical
differencebetween two random variablés andY” on a universé/
is defined to benaxscy |[Pr[X € S] - Pr[Y € 5]|.

Our main objects of study are pseudorandom generators:

Definition 2 A functionG: {0,1}% — {0, 1}" isan(s, ) pseudo-
random generatdf no circuit of sizes can distinguishG from U,
with advantage greater than That is, for every circuiC' of size
S,

[Pr[C(U,) = 1] — Pr[C(G(Us)) = 1]| < .

We begin by recalling the Nisan—Wigderson construction of
pseudorandom generators.

3 The Nisan—Wigderson generator

The combinatorial construction underlying the NW genar&a
collection of sets with small intersections, calledesign

Lemma 3 (design [NW94]) For every/, m € N, there exists a a
family of setsS1,...,Sm C {1,...,d} such that

1. d = O(¢*/logm), 2. For alli, |S;] = ¢, and 3. For all

i # j1Si N S;| < logm. Moreover, such a family can be found
deterministically in timepoly (m, 2¢)

For concreteness, one can thinkaf = 2°¢ for some small
constantd > 0, so thatd = O(¢) = O(logm). Given such
a family of sets, the NW generator takes a uniformly distieéol
string of lengthd and produces: strings of lengtt?. That is, given
parameterg andm, we take the family of sets given by Lemma 3
and defineNW,_,.: {0,1}* — ({0, 1}")™ by

NWem(z) = (251,285, -, TS, ),
wherez s, denotes the projection af onto the coordinates speci-
fied by S;.

The key property of this generator used in [NW94, IW97] is
that the stringses, behave as if they are independent when they
are used as inputs to a hard function. It{0,1}* — {0,1} be
any predicate. Then the NW pseudorandom generator ugiisca
functionNW-PRG/ ,,: {0,1}% — {0,1}™ given by

NW-PRG/,,(z) = P(z1)P(z2) - - P(zm),

where(z1,. .., zm) = NWy n(z)



The main theorem of [NW94] is that i is taken to be a suffi-
ciently hard (on average) predicat‘é}]\/-PRG}f’,m is a good pseu-
dorandom generator.

Theorem 4 (INW94]) SupposeP: {0,1}* — {0,1} is a predi-
cate such that no circuit of size can computeP correctly on
more than a fraction; + = of the inputs. NW-PRGy,,, is an

(s — O(m?log m), ) pseudorandom generator.

entropy at leastém such that no circuit of size' = Q(e*/m?) -

s — O(m?log m) can distinguish the output of

NW-PRGY ,,: {0,1}* — {0, 1}™ from D with advantage greater
thane.

Proof: Let H be a(e/dm)-hardcore set foi?, as given by
Theorem 5. We will show that the following distribution sdies
the requirements of the theorem.

The pseudorandom generators produced by this theorem can be

spectacular, as the seed length= O(¢>/logm) can be much
smaller than (even logarithmic in) the number of output Bit® is
sufficiently hard. The main drawback is that the hypotheselso
extremely strong (in thaP must be very hard on average), and
much work has been done to construct predicates that anegstro
enough for Theorem 4 based on weaker assumptions [BFNW93
Imp95, IW97, IW98]. In the next section, we analyze the duali
of this generator when only a mildly hard predicate is used.

4 Pseudorandom generators via pseudoentropy

In this section, we show how to build a pseudorandom generato
out of a mildly hard predicate in a different (and arguablyreno
direct) way than [IW97]. Specifically, we show how to dirgrctl
build a “pseudoentropy generator” from a mildly hard predéand
argue that applying an extractor to its output gives a pseudom
generator.

4.1 Using a mildly hard predicate

Intuitively, the reason the NW pseudorandom generator s/isk
that whenever; is a “hard instance” of?, P(x;) is indistinguish-
able from a random bit. I is very hard as in the hypothesis of
Theorem 4, then almost all inputs are hard instances. Thitls, w
high probability all ther;’s will be hard instances and the limited
dependence of the;’s guarantees that the(x;)’s will look simul-
taneously random.

Now suppose thaP is instead only mildly hard, in the sense
that no small circuit can compute correctly on more than-a ¢
fraction of inputs, for some small but noticeahie Intuitively,
this means that somé fraction of the inputs are extremely hard
for P. Thus, we'd expect that & fraction of the output bits of
NVV-PRGf,m are indistinguishable from random, so that we should
get some crude pseudorandomness out of the generatort,lthfac
intuition about hard instances can be made precise, usafpth
lowing result of Impagliazzo [Imp95].

Theorem 5 (hardcore sets [Imp95]) Suppose no circuit of size
can computeP: {0,1}* — {0,1} on more than a — ¢ fraction
of the inputs in{0, l}z. Then, for everyg > 0, there exists am-
hardcore seHf C {0,1}" such that H| = ¢ - 2 and no circuit of
sizes’ = (e?6”s) can compute” correctly on more than & + ¢
fraction of the inputs ind.

Using this theorem, we can prove something about the output
of NW-PRGZW when a mildly hard predicat® is used. Notice
that if = is chosen uniformly at random, then each compongnt
x5, of the output ofN'W ., () is uniformly distributed in{0, 1}*.
Hence, theexpectedumber ofz;’s that land inH is dm. Thus, the
earlier intuition suggests that the outputhsﬁTJV-PRGZm should
havedm bits of pseudorandomness, and this is in fact true.

Theorem 6 Suppose no circuit of sizecan compute®: {0, 1}‘ —

{0, 1} on more than d — ¢ fraction of the inputs if{0, 1}*. Then,
for everye > 0, there is a distributionD on {0, 1} of (Shannon)

’N(ﬁ],..

Distribution D: Choosez uniformly from {0,1}%. Let
(z1,...,2m) = NW(z). If z; € H, selecth; € {0, 1} uniformly
at random, and i;; ¢ H leth; = P(z;). Outputb; - - - b, .2

First, we argue that the entropy &f is at leastm. Define
., Zn,) to be the number of;’s that are inH. Then for
anyz € {0,1}", the entropy ofD|, (i.e., D conditioned onz) is
N(NW(z))). By the definition of the Nisan-Wigderson generator,
eachz; is (individually) uniformly distributed and therefore lds
in H with probability §. By linearity of expectations, the expecta-
tion of N(NW(z)) (over uniformly selected) is dm. Thus, since
conditioning reduces entropy (cf., [CT91, Th. 2.6.5]),

H(D)

> B[H(D].)]

E[N(NW(z))]

om

Now we show thatD and NW-PRGf,m are computationally
indistinguishable. Suppose that some circtlidistinguishes the
output of NW-PRGy,,,, from D with advantage greater than
We will show thatC must be of size at leage(e®/m?) - s —
O(m? log m). By complementing” if necessary, we have

Pr [C(NW-PRGZm(Ud)) = 1] —Pr[C(D) =1] > e.

Forz € {0,1}" andr € {0, 1}, define

_Jr ifxe H
Qa,r) = {P(x) otherwise.
Now consider “hybridsDy, . .
defined as follows:

., Dy of DandNW-PRG/,,, (Ua)

Distribution D;:  Choosex uniformly from {0, 1} and choose
r1,...,7m uniformly from {0,1}. Forj = 1,...,m, letp;
P(zs;) andg; = Q(zs,,r;). OUtpUtpy -+ Pigis1 - Gm.

Thus, Dy = NW-PRGF (U;), andD,, = D. By the “hybrid
argument” of [GM84] (cf. [Gol95, Sec. 3.2.3)), there is asuch
that

e/m Pr[C(D;—1) =1] — Pr[C(D;) = 1]
0-Pr[C(Dj—1) =1 | zs, € H|
(=) PrC(Dia) =1 | ws, ¢ H]
—0-Pr[C(D;) =1 | zs, € H|

— (1= 8)PrO(D) =1 | ws, ¢ H]
0-Pr[C(Di—1) =1 | zs, € H|
—0-Pr[C(D;) =1 | zs, € H|,

“Recall that the (Shannon) entropyof a distribution D is (D)
> Pr[D = allog(1/Pr[D = a]).

g‘A similar “bit-flipping” technique is used in [HILL98] to pnee their construction
of a false entropy generator.




where the last equality is becauBk_, and D, are identical con-
ditioned onzs, ¢ H. Expanding and using the fact that =
Q(zs,;, i) = ri whenzs, € H, we have

Pr[C(p1- pi-1migi+1---gm) =1 | zs, € H]
— Pr[C(p1---pi-1pigi+1 - gm) =1 | ws; € H]

> €
om’
wherez is chosen uniformly i{0, 1}‘1 andr;, ..., r, are selected
uniformly in {0, 1}. Renaming-; asb and using the standard trans-
formation from distinguishers to predictors [Yao82] (ciGdl98,
Sec. 3.3.3]), we see that

F;7r7[C(p1---pi71qu‘+1"'Qm)@b:Pi | ws; € H]

1 €

Z 2 + om
Recall thap; (resp. g;) is defined to béP (z s, ) (resp.Q(zs;, 7)),
wherezs; is the projection ofc onto the bits specified by;. Us-
ing an averaging argument we can fix.1, . .., rm, b, and all the
bits of z outside.S; while preserving the advantage in predicting
pi = P(zs;). Renaminges, asz, we now observe that varies
uniformly over H while p; for j < ¢ andg; for j > i are now
functionsP; of z that depend on onljS; N S;| < log m bits of z.
So, we have

Pr(C(Pi(2) - Pic1(2)bPi41(2) -+ Pu(2)) € b = P(2)]

S 1 n €
2 om’
Each P; can be computed by a circuit of size(mlogm),
since every function ofog m bits can be computed by a circuit
of that size. Incorporating these circuits anhto C, we obtain a
circuit C’ of sizesize(C) + O(m? log m) such that
1

3
— 4+ —.

F;r [C'(z) = P(2)] > 5t 5,

Now, sinceH is (¢/dm)-hardcore forP as in Theorem 5¢"
must have size greater th@{s” - (¢ /dm)?) - s = Q(e*/m?) - s,
and henc& must have size greater th@fs? /m?)-s—O(m?> log m).
|

Thus, using a mildly hard predicate with the NW generator, we
can obtain many bits of crude pseudorandomness. A natuxal ne
step would be to try to “extract” this crude pseudorandorarsesd
obtain an output that is indistinguishable from the unifafistri-
bution. Unfortunately, one cannot hope to extract unifgriis-
tributed bits from a distribution that just has high Shaneatropy.
Extraction is only possible from distributions that havghmin-
entropy Recall that a distributio® on a finite sefS is said to have
min-entropyk if forall z € D, Pr[X =z] < 27*.

obtainzi, ...,z from a seedr using the NW generator, we ob-
tainy, ..., ym pairwise independent from a segdand then use
21 = 1 D Y1,-.-,2m = Tm D Ym as the inputs to the predi-

cate P. As we will see in the next section, this gives a generator
whose output is indistinguishable from some distributiathvaigh
min-entropy, as desired.

4.2 A pseudoentropy generator.

The following definition (following [HILL98]) formalizeshe type
of generator we obtain.

Definition 7 A generatoiG: {0, 1}* — {0,1}™ isa(k, s, €) pseu-
doentropy generatdf there is a distributionD on {0, 1}™ of min-
entropyk such that no circuit of size can distinguish the output of
G from D with advantage greater than

Remark 8 The above definition differs from that of [HILL98] in
several ways. Most importantly, we require the output to e i
distinguishable from having high min-entropy, whereas/tbely
require that it be indistinguishable from having high Shamen-
tropy. They later convert to the Shannon entropy to minapytiby
taking many samples on independent seeds, but we cannad affo
the extra randomness needed to do this. Other differeneethar
we ask for indistinguishability against circuits ratheathuniform
adversaries, that we do not require tikabe computable in poly-
nomial time, and that we do not explicitly ask tiiabe larger than
d (though the notion is uninteresting otherwise).

Recall that we need a way of generating many pairwise inde-
pendent strings from a short seed.

Lemma 9 ([CG89] (see also [Gol97a])For any/ € N andm <
2¢, there is a generatoPI, ,,.: {0,1}*" — ({0,1}")™ such that
for y selected uniformly at random, the random varialifds ., (y)1,
.. PIy 1 (y)m are pairwise independent. Moreovei, ,,, is com-
putable in timepoly (¢, m).

Let P: {0, 1}Z — {0, 1} be any predicate, let: be any posi-
tive integer, and let be the seed length &fW,_,,,. Then our pseu-
doentropy generator using is a functionPE;,: {0, 1}"+% —
{0,1}™ given by

PE{ . (z,y) = P(z1 ® y1)P(z2 B y2) -+ P(m & ym),
where

($1,...7$W)ZNW/,m($) and (yh"'aym):PI/,m(y)

The following theorem, whose proof can be found in the full
version of the paper [STV98], confirms that this construttimes
in fact yield a pseudoentropy generator.

Theorem 10 Suppose no circuit of sizecan compute’: {0, 1}Z —

. . . ¢
The reason that we were only able to argue about Shannon en-{0; 1} on more than & — § fraction of the inputs i{0, 1} . Then,

tropy in Theorem 6 is that we could only say that z;'s land in H

on average To obtain a result about min-entropy, we would need
to guarantee that many;'s lie in H with high probability Clearly,
this would be the case if the;’s were generated pairwise indepen-
dently instead of via the NW generator. But we also need tke sp
cial properties of the NW generator to make the current aeutm
about indistinguishability work. Following [IW97], we relve this

dilemma by taking the XOR of the two generators to obtain a new adversary's advantage- ¢ =

generator with the randomness properties of €achhat is, we

9[IW97] take the XOR of the NW generator with a generator cagrfiom a ran-
dom walk on an expander.

foranym < 2, PE},,:{0,1}** — {0,1}" is a (k,+,¢)

pseudoentropy generator, with

seed length=d + 3¢ = O(¢°/logm)
pseudoentropy=k = dm/2
adversary size= s’ = Q(1/6°m")-s — O(m*logm)
0(1/6m)

Moreover,PE;,, is computable in timgoly (m, 9t*/logmy with
m oracle calls toP.



4.3 Extracting the randomness

The tool we will use to transform our pseudoentropy generato
a pseudorandom generator iseractor

Definition 11 A functionExT: {0,1}™ x {0,1}¢ — {0,1}™ is

a (k, e)-extractorif for every for every distributiorD on {0, 1}™

of min-entropyk, ExT(D, U,) has statistical difference at most
fromU,,.

We will make use of the following recent construction of ex-
tractors:

Theorem 12 ([Tre98]) For everym, k, ande such thatk < m,
there is a(k, e)-extractor ExT: {0,1}™ x {0,1}* — {0,1}‘@

such that R
_ log“(m/e)
d=0 < log k

and ExT: {0,1}™ x {0,1}% — {0, 1}‘@ is computable in time
poly(m,d).

The following lemma (proved in the full version of the pa-
per [STV98]) confirms the intuition that applying an extrcto
a distribution that is computationally indistinguishablem a dis-
tribution with high min-entropy should yield a distributighat is
indistinguishable from uniform.

Lemma 13 Supposé: {0,1}" — {0,1}™ is a(k, s,e1) pseu-
doentropy generator anBxT: {0,1}™ x {0,1}*2 — {0,1}" isa
(k, e2)-extractor computable by circuits of sizeThen
G':{0,1}"172 5 {0,1}" defined byG" (u, v) = EXT(G(u), v)
isa(s —t,e1 + 2) pseudorandom generator.

Summing up, we have the following theorem:

Theorem 14 There is a universal constant > 0 such that the
following holds. LetP: {0,1} — {0,1} be any predicate such
that no circuit of sizes can computeP correctly on more than a
1 — ¢ fraction of the inputs, where < 2t andd > s~ 7. Define

n = s” andm = 2n*/é and letPE,,: {0,1}"* — {0,1}™ be
the(6m/2,Q(1/6°m") - s — O(m” logm), O(1/6m)) pseudoen-
tropy generator of Theorem 10 and ExT: {0,1}™ x {0,1}%2 —
{0,1}" be the(dm/2,1/dm)-extractor of Theorem 12. Let

PE-PRGT: {0,1}"'"%2 - {0,1}" be defined by
PE-PRG” (u,v) = EXT(PEy,, (u), ).
Then,PE-PRGT is a(s’, ) pseudorandom generator with

= S’Y

0 (i3)
Vs
o(1/n),

output length=n

seed length= d; + d»

adversary size= s’

adversary’'s advantage: e

Moreover, PE-PRGF can be evaluated in timg®(¢*/1og5) with
O(n?/$) oracle calls toP.

In particular, suppos® is a predicate irt such that no circuit
of sizes = 2% can computeP correctly on more thana — 6§ =
1—1/poly(¥¢) fraction of the inputs. Then the output lengtis=

291 the seed length i©(¢) = O(log n), no circuit of sizes’ =
2% can distinguish the output from uniform, and the generator

can be evaluated in timgoly(n), so the resulting pseudorandom
generator is sufficiently strong to obtdth= BPP.

62
+r) <o ().
log s

62
= O(lOgS) S O (lOgS) 1

and ExT is computable in timg¢ = poly(m,d2) = poly(m).
By Lemma 13, no circuit of size’ can distinguish the output of
PE-PRG from uniform wth advantage greater thér(1/ém)
O(1/n*), where

Proof: By Theorem 10,

2
=0
log

By Theorem 12,

log? (#)
log(9m/2)

m

d» =0

s' = Q(1/6°m")-s— O(m* logm) —t > Q(s" ") — poly(s”)

By choosingy sufficiently small,s’ will always be at leasy/s. H

Remark 15 As mentioned earlier, Hastad et al. [HILL98] intro-
duced the notion of a pseudoentropy generator and showed tha
the crude pseudorandomness of such a generator can betexttrac
to yield a pseudorandom generator. Their work is in the “toyp
graphic” setting, in which the generators must be compataibl
time polynomial in theseed lengttand hence one can only hope
for the output to be polynomially longer than the seed (nathan
exponentially, as we obtain). Hence throughout their qoetibn
they can afford super-linear increases in seed length, eesepre-
serving the seed length up to linear factors is crucial fdawting
pseudorandom generators good enoughPfer BPP. For exam-
ple, they can afford to use randomness-inefficient extractach

as 2-universal hash functions, whereas we require extsagtioich
use only a logarithmic number of truly random bits, which éav
only been constructed recently [Zuc96, Tred3].

Remark 16 The output of the pseudoentropy genereﬁﬁ]fm con-
structed in Theorem 10 is actually “nicer” than stated. Hjmzdly,

it is indistinguishable from ablivious bit-fixing source— that is,
a distribution on strings of lengte in which m — k bit positions
are fixed and the othéy bit positions vary uniformly and indepen-
dently. Such sources were the focus of the “bit extractiaif@m”
studied in [Vaz85, BBR85, CGHB5, Fri92] and the term “obliv-
ious bit-fixing source” was introduced in [CW89]. To see tta
output ofPEme is indistinguishable from an oblivious bit-fixing
source, simply observe that the distributiBhgiven in the proof
of Theorem 10 is such a sourtk.Extracting from oblivious bit-
fixing sources in which all but bits are fixed is an easier task than
extracting from a general source of min-entrapyand already in
[CW89] there are (implicitly) extractors sufficient for opurposes.

5 Algebraic amplification of hardness

Recall the main theorem of Nisan and Wigderson (Theoremat) th
states that given a hard predicae{0, 1}* — {0, 1}, one can get

'%1ndeed, the term “extractor” was not even present at the dffiILL98] and the
first constructions of randomness-efficient extractorslubeir Leftover Hash Lemma
as a starting point.

1 Actually, D is aconvex combinationf oblivious bit-fixing sources. Distribution
X is said to be a convex combination of distributios, . . . , X, if there is a distri-
butiononZ on{1, ..., ¢} suchthatX can be realized by choosirige {1,...,¢}
according tal, taking a sample from X;, and outputting:. Itis easy to see that any
extractor for oblivious bit-fixing sources also works fomwvex combinations of them.



a pseudorandom generator. The requirement of a hard ptedica
P in this theorem can be replaced with a requirement of a hard
function (with many bits of output) using the hardcore poatk
construction of Goldreich and Levin [GL89] (see also [GdIP7
Given a functiong: {0, 1}* — {0, 1}, the hardcore predicate for

g is the functionGL,: {0, 1}*+¢ — {0, 1} given by

GLy(z,7) = (g(z),r), forz € {0,1}* andr € {0,1}",

where(u, v) denotes the mod-2 inner productwt= (u1, . ..
andv = (vi,...,v) (i.e.,Zle u;v; (mod 2)).

) )

Theorem 17 (JGL89]) There exists a constants.t. the following
holds. Ifg: {0,1}* — {0,1}" is a function such that no circuit of
sizes can computegy correctly on more than as fraction of the
inputs, thenGL,: {0,1}*T* — {0,1} is a predicate such that no
circuit of sizes’ = Q((55)° - s) can computeP correctly on more
than a fraction + 2e of the inputs.

Then, forn = s, NW-PRGZ :{0,1}' — {0,1}" isan(s',¢)
pseudorandom generator with

output length= n v

= S

2
seed length=t = O( ¢ )
log s
NE

adversary’s advantage- ¢ = O(1/n”),

adversary size= s’

Moreover, PE-PRG” can be evaluated in timg@(¢*/ 1085 with
access to the entire truth table &%

5.1 The reconstruction procedure
First, a bit of terminology:

Definition 21 Arandomized procedurd is said tocomputea func-
tion f: X — Y ata pointz € X if Pr[A(z) = f(z)] > 3/4,

Thus the two theorems above show that it suffices to construct where the probability is taken over the internal coin tossési.
hardfunctionsto obtain pseudorandom generators. The approach We say thatd hasagreementx € [0, 1] with f if A computesf on

of Impagliazzo and Wigderson is to start from a predidatihat is
hard in the worst case (i.e., no small circuit computes iteity
on all inputs); then to use a low-degree extensiorPafo obtain
a polynomial functiorp that is mildly hard on the average. They
then apply two different XOR lemmas to obtain a functionst tha
grow harder; eventually obtaining as hard a function asiredun

an« fraction of the inputs iD. We say thatd computesf if it has
agreement 1 witlf.

Now we prove Theorem 19 by providing a uniform solution to
the following “multivariate reconstruction problem”.

Theorem 17. We use an alternate approach for this sequence byGiven: An oraclef: F™* — F and parameteré € N ande € R.

showing directly that the functiop above is very hard; as hard as
required for the combination of Theorems 4 and 17. We start by
specifying the properties of the low-degree extension; aofof
following standard lemma can be found in the full versiontaét
paper [STV98].

Proposition 18 For everyd, ¢ and predicateP: {0, 1}* — {0, 1},
there existan, d € N, a field F, and a polynomiap: F™ — F
(the low-degree extension) of total degrkgatisfying the following
properties:

d_

1. mlog |F| < 4¢, 7

< d,and|F| < poly(£/4).

2. If Tp and T denote the worst-case computation times (or
circuit sizes) forP andp respectively, then

Tp < Ty < poly(2'Tp)

(p is harder thanP but not too much harder, especially#f
has time complexitg®(©).)

In the following section we prove the following theorem.

Theorem 19 There exists a constans.t. if some functiorf: F"* —
F computed by a circuit of size agrees with a degreé polyno-
mial p: F* — F one > cy/d/|F| fraction of the inputs, then
there exists a circuit of size- poly(mdlog |F|/<) that computes
p correctly everywhere.

Putting together the above we get:

Theorem 20 There exists a universal constant> 0 such that the
following holds: LetP: {0, 1}* — {0, 1} be a function that is not
computed by any circuit of size wheres < 2¢. Letm,d, F,p
be as guaranteed to exist by Proposition 18 foe= s~ 7. Let
¢ = 4f+1log|F| andQ: {0, 1} — {0, 1} be given by = GL;
(wherep is now viewed as a function frodt bits tolog | F| bits).

Goal: Reconstruct (an implicit representation for) every polyno
mial that hass-agreement with the functioli. Specifically, con-
struct randomized oracle machinks , . . ., M}, such that for every
polynomialp: F™™ — F of degreed that has (relative) agreement
e with f, there existg € [k] such thatZ\/[]f computed.

We will be interested in the running time of the “reconstioctpro-
cedure”, i.e., the time taken to generate the machides. . . , My,
as well as the running times of the machines, . .., M.

Theorem 22 There exists a constantuch that the reconstruction
problem above can be solved in tipely (md log |F'| /<), with the
running time of each of the oracle machines listed in the wutp

beingpoly(mdlog |F|/e), providede > c/d/|F]|.

Remark 23 1. This theorem is a strengthening of a theorem
due to [AS97]. In particular, the lower bound erhere is
smaller than that of [AS97], who obtain an unspecified poly-
nomial ind and ﬁ Furthermore, our proof is simpler and

in particular does not require “low-degree testing.”

2. The bound of2(4/d/|F]) is within a constant factor of the
bound for the univariate case. The constamtbove is not
optimized in this writeup. But our methods can push it down
to any constant greater th&n For the univariate case, this
constant isl. No inherent reason is known for the gap.

Observe that Theorem 19 follows immediately from Theorem 22
We have formulated the multivariate reconstruction probie such

a way that an efficient solution to it (as in Theorem 22) imragsly
implies a hardness amplification result. It should be clbat the
connection actually applies to any error-correcting camteathich
there exist efficient algorithms for encoding (as in Profosil8)
and “list-decoding” (that is, finding efficient oracle maoés for
every codeword that agrees with a given oraglén sufficiently
many places). The “rate” of the code determines how the input
length of the function changes when we encode it (e.g. in¢&iep
tion 18, input lengtl! becomesnlog |F| < 4¢ and linear growth



like this is needed to obtain the result of [IW97]). The amtooh
agreement for which the list-decoding works determines hawd-
on-average the encoded function is. The running time of taele
machines produced in the reconstruction procedure datesrthe
circuit size for which the hardness amplification works.

We now move on to the proof of Theorem 22. Fix an oracle
f: F™ — F and a degred polynomialp: F™ — F with § agree-
ment with f. We observe that it suffices to reconstruct a (random-
ized) oracle machind/ such thatM/ has sufficiently high agree-
ment withp. This is due to the existence of “self-correctors” of
polynomials [BF90, Lip89, GLR91, GS92]. Specifically, we use
the following theorem:

Theorem 24 ([GLR191]) There exists a randomized oracle ma-
chine Corr taking as parameters integetsand m and a fieldF’
such that on access to an randomized oratle F™ — F with
agreemenli—g with some degred polynomialp, Corr™ computes
pintimepoly(d, m) provided|F'| > 2(d + 1).

As in the algorithms of [BF90, Lip89, GLR91], we use the
properties of “lines” in then-dimensional spacé&™, defined be-
low.

Definition 25 Theline throughz,y € F™, denotedl, ,, is the

parametrized set of point@lz,y(t)d:ef(l —tir+ty | t € F}.
Given a functionf: F™ — F, f restricted to the lind, , is the
functionf|,, ,: F — F given byf|i, , (t) = f(l.4(1)).

Notice that iff is a polynomial of total degre, thenf|;, , (t)

is a univariate polynomial of degree at maekt Our strategy, to
reconstruct the value qf at a pointz, is to look at a random line
going throughz. On this linep turns into a univariate polynomial.
Furthermore, the random line through the randomly chosént po
z is a “pairwise independent” collection of points frafi". Thus

p and f will have agreement close tbon this line as well. Thus
the goal of findingp(z) “reduces” to the goal of reconstructing
restricted to this line, i.e., a univariate reconstructfpoblem, a

problem that has been addressed in [ALRS92, Sud97, GS98]. In

particular, we use the following theorem.

Theorem 26 ([Sud97]) Given a sequence afdistinct pairs
{(ti,vi)}i=., ti,vi € F and integer parameterd, k, a list of
all polynomialsgs, ..., g satisfying|{: € {1,...,n}|g;(t:) =
vi}| > k, can be reconstructed in timeoly (n, log |F'|) provided
k > v/2dn. Furthermorel < 2%,

We describe a family of reconstruction procedures,
{M. o}:eFrm acr, that will be used to construct the machings,
..., M. To gain some intuition into the procedure below, it may
be helpful to consider only the machinég, ,.,. The machines
take as parameters a positive real numhentegersd andm, and
afieldF.

o M., .(z):

1. (Explicitly) find a list of distinct (univariate) polyno-
mialsgi, ..., g such that this list includes all polyno-
mials that have agreement at leag® with f|;,_ , and
does not include any polynomial with agreement less
thane /4.

2. If there exists a unique indexe {1,...,1} such that
g:(0) = a, then outpuiy; (1), else output anything.

Remark 27 1. Step 1 above can be computed in time polyno-
mial in 1/¢, log | F'| andd as follows: If F’ is small enough,
then we lettq, ..., t, be all the elements of and invoke
Theorem 26 onthe sétt;, (1. . (t:))) }ie1 Withk = en/2.

(Note thatk > +/2dn as long ag > 2,/d/|F|, which is
true by hypothesis.) If is too large to do this, then set=
poly(d/e) and pickty, . . ., ¢, distinct at random fronf” and
then invoking Theorem 26 on the sftt;, f(1..=(t:)))}i=1
with & = en/4. Since there are at modye polynomials
with agreement at leasy2 with f|;_ , (by the “furthermore”
part of Theorem 26), the choice af guarantees that with
high probability, all of these polynomials agree with_ ,
on at leastn/4 of thet;’s. As the choice of: also guaran-

teesthak = (en/4) > v2dn, Theorem 26 yields a list con-
taining all polynomials with agreement at leag2. Now, we
wish to discard all polynomials with agreement less thah

— this can be accomplished by comparing each polynomial
g obtained withf|,. . on a random sample gfoly(1/e)
points from F and discarding it if it has agreement smaller
thane /3 on this sample.

2. The number of polynomials output in Step 1 above is at most
8/¢ (by the “furthermore” part of Theorem 26.)

To shed some light on the steps above: We expecifhat is
one of they;'s returned in Step (1) above. In Step (2) we try to find
out whichg; to use by checking to see if there is a unique one which
hasg;(0) = a (recall thatp|;, . (0) = p(z)), and if so we use this
polynomial to outpup(z) = pli. , (1) = ¢:(1). This intuition is
made precise in the Section 5.2. We now finish the descrition
the reconstruction procedure.

e Reconstruction algorithm.

— Repeat the following)(log(1/¢)) several times:

1. Pickz € F™ at random.

2. Picky € F™ atrandom.

3. Find a list of univariate polynomialgi,...,h;
including all polynomials with agreement at least
e/2 with f|;, ,."?

4. For every polynomiakh;, include the oracle ma-
chineCorr™=73® in the output list.

5.2 Analysis of the polynomial reconstruction pro-
cedure

Now we show that the reconstruction algorithm runs in timeiru
time poly (22 log | F'|) and outputs a list of oracles that includes
one for every polynomiap that hase agreement withf. Theo-
rem 22 follows immediately.

The claim about the running time is easily verified. To analyz
the correctness, it suffices to show that in any iterationtepS 1-4
in Reconstruction Algorithm, an oracle computing is part of the
output with, say, constant probability for any fixed polyriahp of
degreed that hass agreement withf. We show this in two parts.
First we argue that for most choices afM, .y is an oracle that
computeg on15/16 of all inputs (and thu€orr™=-»(=) computes
p everywhere). Then we show that for most pdirsy), there exists
j s.t. the polynomiah; reconstructed in Step 3 satisfies(0) =

p(2).

Lemma 28 There exists a constants.t. for everyd, F', ¢ satisfy-
ingl > e > ¢y/d/|F|, itis the case that

Pr[M. () (2) = p(w)] > 15/16,

with probability at Ieast% over the random choice efe F™,

12This is done as in Remark 27, though here we do not care ifshedntains extra
polynomials with low agreement.



Proof: We first argue that when bothandz are picked at random,
certain bad events are unlikely to happen. The next two claim
describe these bad events and upper bound their probability

Claim 29 If £ > 164/1/|F|, then

Pr[gie(l]styg =pl..] <1/64

Proof:  For the polynomiap|;, , not to be included in the output
listit has to be the case thatand f do not have: /2 agreement on
the linel, ... But the line is a pairwise independent collection of
|F’| points in F™. The quantity of interest then is the probability
that a random variable with expectatierattains an average of at
moste/2 on|F'| samples. Using Chebychev’s inequality, this prob-
ability may be bounded bg‘% < 4 <164, W

162

Claim 30 If £ > 324/d/|F|, then
ld

|F|

Proof:  For convenience in this argument, assume that,.,
finds all polynomials of agreement at least4 with f|;_ , rather
than just a subset, as that is clearly the worst case for tiencl
Now, instead of picking: andz at random and then letting, ..., g
be all degreel polynomials withe /4 agreement withf|;. ,, we
first pick z’, ' independently and uniformly at random frofi™;
and letgi, . .., g;, be all univariate degreg polynomials withs /4
agreement with‘|,:,)m,. We now pick two distinct elements, ¢»
uniformly from F and letz = 1, ,/ (t1) andz = [, . (t2). Notice
that we can express =1, ,((ta —t1) "' -t2) andz’ =1, . ((t2 —

t1)7' - (t2 — 1)). Thus the lineg. . andl. ,/ contain the same

set of points and thus the polynomiglgt)cggg(tg +t(t1—t2))

are exactly the set of polynomials witfi4 agreement witty|,. ..
Thus the eventp|;. , # g; andp|. ,(0) = g;(0)"is equivalent to
theeventp|; , , # g; andpl,, _, (t1) = gj(t1)", wheret, is be-

z!,z

ing chosen at random. This probability is at m%tfor any fixeds
and thus the probability that there existgstp|.,, _, (t1) = gj(t1)
is at most - % Froml < £ and1 > ¢ > 32,/d/|F|, the claim
follows. W

Pr[3j €[] stg; #p — g;(0)] < = < 1/64.

1., andp

1. (0)

Discounting for the two possible bad events consideredand 29
and 30, we find that with probability at least— % there ex-
ists a polynomial; returned in Step 1 of, ., such thatg;
p furthermore, this is the unique polynomial such thd0)
pli.. (0) = p(2). Thus the output ig;(1) = pl:. . (1) = p(z).

Thus with probability at least1/32, we find that for a random
pair (z,x), M, ,.) computesp(z). An application of Markov’s
inequality now yields the desired resultl

lzas

Lemma 31 With probability at least — 6i4 one of the polynomials

reconstructed in any one execution of Step Retonstruction
Algorithm is p|;, ,; and thus one of the oracles created in Step 4

is Corr™=-»(=), provided|F| is large enough.

Proof: As in Claim 29 we argue that and f have at least/2
agreement on the link , and therp|;. , is one of the polynomials

output in this step. Thus one of the oracles creatd@bis™/=-= for
a=pl.,0)=pz). A

Proof of Theorem 22: Fix any degreel polynomial p with ¢
agreement withf. Combining Lemmas 28 and 31 we find that with
probability 31/64, one of the oracles output by the reconstruction
algorithm isCorr"'=.»(=); andz is such that/, (., compute®(z)

for at leastl5/16 fraction ofz’s in F; and thus (by Theorem 24)
CorrM=.»(=) computeg on every input.

Repeating the loo®(log é) times ensures that every polyno-
mial p with ¢ agreement witty is included in the output with high
probability, using the well-known bound that there are dnlyt /)
such polynomials (cf., [GRS98, Theorem 17])l
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