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Abstra
t
Impagliazzo and Wigderson [IW97] have recently shown that if
there exists a decision problem solvable in time2O(n) and hav-
ing circuit complexity2
(n) (for all but finitely manyn) thenP =BPP. This result is a culmination of a series of works showing con-
nections between the existence of hard predicates and the existence
of good pseudorandom generators.

The construction of Impagliazzo and Wigderson goes through
three phases of “hardness amplification” (a multivariate polyno-
mial encoding, a first derandomized XOR Lemma, and a second
derandomized XOR Lemma) that are composed with the Nisan–
Wigderson [NW94] generator. In this paper we present two dif-
ferent approaches to proving the main result of Impagliazzoand
Wigderson. In developing each approach, we introduce new tech-
niques and prove new results that could be useful in future improve-
ments and/or applications of hardness-randomness trade-offs.

Our first result is that when (a modified version of) the Nisan-
Wigderson generator construction is applied with a “mildly” hard
predicate, the result is a generator that produces a distribution indis-
tinguishable from having large min-entropy. An extractor can then
be used to produce a distribution computationally indistinguishable
from uniform. This is the first construction of a pseudorandom gen-
erator that works with a mildly hard predicate without doinghard-
ness amplification.

We then show that in the Impagliazzo–Wigderson construction
only the first hardness-amplification phase (encoding with multi-
variate polynomial) is necessary, since it already gives the required
average-case hardness. We prove this result by (i) establishing a
connection between the hardness-amplification problem anda list-
decoding problem for error-correcting codes based on multivariate
polynomials; and (ii) presenting a list-decoding algorithm that im-
proves and simplifies a previous one by Arora and Sudan [AS97].�The full version of this paper appears as [STV98].yLaboratory for Computer Science, 545 Technology Square, MIT, Cambridge, MA
02141.E-mail: madhu@theory.lcs.mit.edu .zDepartment of Computer Science, Columbia University, 500W120th St., New
York, NY 10027.Email: luca@cs.columbia.edu . Work done at MIT.xLaboratory for Computer Science, 545 Technology Square, MIT, Cam-
bridge, MA 02141. E-mail: salil@theory.lcs.mit.edu . URL:
http://theory.lcs.mit.edu/˜salil . Supported by a DOD/NDSEG grad-
uate fellowship and partially by DARPA grant DABT63-96-C-0018.

1 Introdu
tion
This paper continues the exploration of hardness versus random-
ness trade-offs, that is, results showing that randomized algorithms
can be efficiently simulated deterministically if certain complexity-
theoretic assumptions are true. We present two new approaches
to proving the recent result of Impagliazzo and Wigderson [IW97]
that, if there is a decision problem computable in time2O(n) and
having circuit complexity2
(n) for all but finitely manyn, thenP = BPP. Impagliazzo and Wigderson prove their result by pre-
senting a “randomness-efficient amplification of hardness”based
on a derandomized version of Yao’s XOR Lemma. The hardness-
amplification procedure is then composed with the Nisan–Wigderson
(NW) generator [NW94] and this gives the result. The hardness
amplification goes through three steps: an encoding using multi-
variate polynomials (from [BFNW93]), a first derandomized XOR
Lemma (from [Imp95]) and a second derandomized XOR Lemma
(which is the technical contribution of [IW97]).

In our first result, we show how to construct a “pseudoentropy
generator” starting from a predicate with “mild” hardness.Roughly
speaking, apseudoentropy generatortakes a short random seed
as input and outputs a distribution that is indistinguishable from
having high min-entropy. Combining our pseudoentropy generator
with an extractor, we obtain a pseudorandom generator. Interest-
ingly, our pseudoentropy generator is (a modification of) the NW
generator itself. Along the way we prove that, when built outof
a mildly hard predicate, the NW generator outputs a distribution
that is indistinguishable from having high Shannon entropy, a result
that has not been observed before. The notion of a pseudoentropy
generator, and the idea that a pseudoentropy generator can be con-
verted into a pseudorandom generator using an extractor, are due
to Håstad et al. [HILL98].1 Our construction is the first construc-
tion of a pseudorandom generator that works using a mildly hard
predicate and without hardness amplification.

We then revisit the hardness amplification problem, as consid-
ered in [BFNW93, Imp95, IW97], and we show that the first step
alone (encoding with multivariate polynomials) is sufficient to am-
plify hardness to the desired level, so that the derandomized XOR
Lemmas are not necessary in this context. Our proof is based on
a list-decoding algorithm for multivariate polynomial codes and
exploits a connection between the list-decoding and the hardness-
amplification problems. The list-decoding algorithm described in
this paper is quantitatively better than a previous one by Arora and
Sudan [AS97], and has a simpler analysis.1To be accurate, the termextractorcomes fron [NZ96] and postdates the paper of
Håstad et al. [HILL98].



An overview of previous results. The works of Blum and
Micali [BM84] and Yao [Yao82] introduce the notion of a cryp-
tographically strong pseudorandom generator (csPRG) and show
how to construct pseudorandom generators based on the existence
of one-way permutations. A csPRG is a polynomial-time algorithm
that on input a randomly selected string of lengthn� produces an
output of lengthn that is computationally indistinguishable from
uniform by any adversary ofpoly(n) size, where� is an arbitrar-
ily small constant. Yao also observes that a given polynomial-time
randomized algorithm can be simulated deterministically using a
csPRG in time2n� � poly(n) by trying all the seeds and taking the
majority answer.

In a seminal work, Nisan and Wigderson [NW94] explore the
use of a weaker type of pseudorandom generator (PRG) in orderto
derandomize randomized algorithm. They observe that, for the pur-
pose of derandomization, one can consider generators computable
in time poly(2t) (instead ofpoly(t)) wheret is the length of the
seed, since the derandomization process cycles through allthe seeds,
and this induces an overhead factor2t anyway. They also observe
that one can restrict to generators that are good against adversaries
whose running time is bounded by a fixed polynomial, instead of
every polynomial. They then show how to construct a pseudo-
random generator meeting this relaxed definition under weaker as-
sumptions than those used to build cryptographically strong pseu-
dorandom generators. Furthermore, they show that, under a suf-
ficiently strong assumption, one can build a PRG that uses seeds
of logarithmic length (which would be impossible for a csPRG).
Such a generator can be used to simulate randomized algorithms
in polynomial time, and its existence impliesP = BPP. The con-
dition under which Nisan and Wigderson prove the existence of a
PRG with seeds of logarithmic length is the existence of a decision
problem (i.e., a predicateP : f0; 1gn ! f0; 1g) solvable in time2O(n) such that for some positive constant� no circuit of size2�n
can solve the problem on more than a fraction1=2 + 2��n of the
inputs.2 This is a very strong hardness requirement, and it is of
interest to obtain similar conclusions under weaker assumptions.

An example of a weaker assumption is the existence of amildly
hard predicate. We say that a predicate is mildly hard if for some
fixed � > 0 no circuit of size2�n can decide the predicate on more
than a fraction1 � 1=poly(n) of the inputs. Nisan and Wigder-
son prove that mild hardness suffices to derive a pseudorandom
generator with seed ofO(log2 n) length, which in turn implies a
quasi-polynomial deterministic simulation ofBPP. This result is
proved by using Yao’s XOR Lemma [Yao82] (see, e.g., [GNW95]
for a proof) to convert a mildly hard predicate overn inputs into
one which has input sizen2 and is hard to compute on a fraction1=2 + 2�
(n) of the inputs. A series of subsequent papers attacks
the problem of obtaining stronger pseudorandom generatorsstart-
ing from weaker and weaker assumptions. Babai et al. [BFNW93]
show that a predicate ofworst-casecircuit complexity2
(n) can be
converted into a mildly hard one.3 Impagliazzo [Imp95] proves a
derandomized XOR Lemma which implies that a mildly hard pred-
icate can be converted into one that cannot be predicted on more
than someconstantfraction of the inputs by circuits of size2�n.
Impagliazzo and Wigderson [IW97] prove that a predicate with the
latter hardness condition can be transformed into one that meets the
hardness requirement of [NW94]. The result of [IW97] relieson a
different derandomized version of the XOR Lemma than [Imp95].
Thus, the general structure of the original construction ofNisan and
Wigderson [NW94] has been preserved in most subsequent works,
progress being achieved by improving the single components. In
particular, the use of an XOR Lemma in [NW94] continues, albeit2This has to be true for all but finitely many input lengthsn.3In fact the result of [BFNW93] was somewhat weaker, but it is easily extendable
to yield this result.

in increasingly sophisticated forms, in [Imp95, IW97]. Likewise,
the NW generator and its original analysis have always been used
in conditional derandomization results since.4 Future progress in
the area will probably require a departure from this observance of
the NW methodology, or at least a certain amount of revisitation of
its main parts.

In this paper, we give two new ways to build pseudorandom
generators with seeds of logarithmic length. Both approaches by-
pass the need for the XOR Lemma, and instead use tools (such as
list decoding, extractors, and pseudoentropy generators)that did
not appear in the sequence of works from [NW94] to [IW97]. For
a diagram illustrating the steps leading up to the results of[IW97]
and how our techniques depart from that framework, see Figure 1.
Both of our approaches are described in more detail below.
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Figure 1: A comparison of our approach with previous ones. Dou-
ble arrows indicate our results.A Pseudoentropy Generator. Nisan and Wigderson show
that when their generator is constructed using a very hard-on-average
predicate, then the output of the generator is indistinguishable from
the uniform distribution. It is a natural question to ask what hap-
pens if there are stronger or weaker conditions on the predicate. In
this paper we consider the question of what happens if the predicate
is only mildly hard. Specifically we are interested in whether expo-
nential average-case hardness is really necessary for direct pseu-
dorandom generation. In this paper we first show that, when a
mildly hard predicate is used in the NW generator, then thereexists
a distribution having high Shannon entropy that is indistinguish-
able from the output of the generator. Our main result is thenthat,
for a mildly hard predicate, a modified version of the NW gener-
ator has an output indistinguishable from a distribution with high
min-entropy. Such a generator is essentially a “pseudoentropy gen-
erator” in the sense of Håstad et al. [HILL98]. The intuition behind
our proof is that if a predicate is hard to compute on more thana
fraction1� Æ of the inputs then there should be some subset of the
inputs of densityÆ on which the predicate is very hard — this in-
tuition is made precise by a result of Impagliazzo [Imp95]. Due to
the high hardness, the evaluation of the predicate in a random point
of this set will be indistinguishable from a random bit. The NW
generator constructed with a predicateP works by transforming an
input seeds into a sequence of pointsx1; : : : ; xm from the domain
of P ; the output of the generator is thenP (x1)P (x2) � � �P (xm).
For a random seed, each of the pointsxi is uniformly distributed,
and so we expect to typically generateÆm points from the hard
set, so that the output of the generator looks like havingÆm bits of4The techniques of Andreev et al. [ACR97] are a rare exception, but they yield
weaker result than the ones of [IW97].



randomness, that is, it is indistinguishable from some other distri-
bution having (Shannon) entropyÆm. The generation of the pointsx1 � � �xm can be modified so that the number of points landing in
the hard set is sharply concentrated around its expected valueÆm.
The output of the modified generator is then indistinguishable from
having high min-entropy. When our generator is composed with a
sufficiently good extractor5 (such as the one in [Tre98]) then the re-
sult is a pseudorandom generator. This is the first construction of a
pseudorandom generator based on mild average-case hardness that
does not rely on hardness amplification. It is also the first applica-
tion of the notion of a pseudoentropy generator to the construction
of PRG in the Nisan–Wigderson sense.

Remark 1 While in this paper we analyze for the first time the
Nisan-Wigderson generator under aweakerassumption than the
one originally considered in [NW94], there has also been some
work exploring the effect ofstrongerassumptions on the predicate.
Impagliazzo and Wigderson [IW98] show that if the predicatehas
certain additional properties (such as “downward self-reducibility”)
then one needs only auniform hardness assumption on the pred-
icate (rather circuit-complexity assumption). Arvind andKöbler
[AK97] and Klivans and van Melkebeek [KvM98] show that if the
predicate is hard on average fornondeterministiccircuits, then the
output of the generator is indistinguishable from uniform for non-
deterministic adversaries. Therefore it is possible to derandomize
classes involving randomness and nondeterminism, such asAM.
Trevisan [Tre98] shows that if the predicate is chosen randomly
from a distribution having certain properties, then the output issta-
tisticallyclose to uniform. This yields the construction of extractors
that we use in our generator.The Conne
tion with Polynomial Re
onstru
tion. Our
second result deals with the polynomial reconstruction problem
and its connection to amplification of hardness. In the polyno-
mial reconstruction problem we want to design an efficient ran-
domized algorithm that, given oracle access to a functionf that
hasÆ-agreement6 an unknown low-degree polynomialp(�), com-
putesp(�) on every input with high probability over its internal
coin tosses. This problem has been studied for its applications
to program checking, average case hardness results for the perma-
nent, and random self-reducibility of complete problems inhigh
complexity classes [BF90, Lip89, GLR+91, FF93, GS92, FL96,
CPS99].

The applicability of polynomial reconstruction to hardness ver-
sus randomness results was demonstrated by Babai et al. [BFNW93].
They show that the existence of a polynomial reconstructionproce-
dure implies that one can convert a worst-case hard predicate into
one which is mildly average-case hard by encoding it as a poly-
nomial. As in [NW94, Imp95, IW97] one can further amplify the
hardness using XOR Lemmas. It is intuitively clear that a stronger
reconstruction algorithm would imply a stronger hardness amplifi-
cation result and it could be used in place of the XOR Lemma. Un-
fortunately, some calculations show that a polynomial reconstruc-
tion algorithm would have to work withÆ = o(1) in order to be a
viable surrogate of an XOR Lemma, but if we have access to a func-
tion f with Æ-agreement to some polynomialp(�), whereÆ < 1=2,
then p(�) is not uniquely determined and the polynomial recon-
struction problem is ill-posed. On the other hand even for very
small values ofÆ, there is only a small number of polynomials that
areÆ-close to any given functionf , and one can conceive a gener-
alized reconstruction procedure that having oracle accessto f out-
puts a small number of efficient programs so that every polynomial5An extractor is an efficient algorithm that on input a distribution sampled from a
distribution with high min-entropy has an output that is statistically close to uniform.6We say that a functionf hasÆ agreement with a functiong if f andg are equal
on a fraction at leastÆ of their domain.

that isÆ-close tof is computed by one of these programs. Finding
a generalized reconstruction procedure of this form is a version of
the “list decoding” problem for error-correcting codes (though we
will not use the phrase “list decoding” in most of our exposition).
Such a generalized reconstruction procedure has been givenfor the
first time only very recently by Arora and Sudan [AS97]. The pro-
cedure of Arora and Sudan has a complicated analysis that relies
on their difficult analysis of the low-degree test for the “highly
noisy” case. In this paper we present a reconstruction procedure
that works for an even wider range of parameters and has a much
simpler proof. We also show that our reconstruction procedure is
strong enough to imply the hardness amplification result of [IW97]
(but even the weaker procedure of Arora and Sudan [AS97] would
have sufficed). It has been pointed out to us that the connection
between (generalized) polynomial reconstruction and hardness am-
plification has also been observed by Avi Wigderson [Wig98] and
S. Ravi Kumar and D. Sivakumar [KS98].2 Preliminaries
We writeUn for the uniform distribution onf0; 1gn. Thestatistical
differencebetween two random variablesX andY on a universeU
is defined to bemaxS�U jPr [X 2 S℄� Pr [Y 2 S℄j.

Our main objects of study are pseudorandom generators:

Definition 2 A functionG: f0; 1gd ! f0; 1gn is an(s; ") pseudo-
random generatorif no circuit of sizes can distinguishG fromUn
with advantage greater than". That is, for every circuitC of sizes, jPr [C(Un) = 1℄� Pr [C(G(Ud)) = 1℄j � ":

We begin by recalling the Nisan–Wigderson construction of
pseudorandom generators.3 The Nisan{Wigderson generator
The combinatorial construction underlying the NW generator is a
collection of sets with small intersections, called adesign.

Lemma 3 (design [NW94]) For every`;m 2 N, there exists a a
family of setsS1; : : : ; Sm � f1; : : : ; dg such that
1. d = O(`2= logm), 2. For all i, jSij = `, and 3. For alli 6= j jSi \ Sj j � logm. Moreover, such a family can be found
deterministically in timepoly(m; 2d)

For concreteness, one can think ofm = 2�` for some small
constant� > 0, so thatd = O(`) = O(logm). Given such
a family of sets, the NW generator takes a uniformly distributed
string of lengthd and producesm strings of length̀ . That is, given
parameters̀ andm, we take the family of sets given by Lemma 3
and defineNW`;m: f0; 1gd ! (f0; 1g`)m byNW`;m(x) = (xS1 ; xS2 ; : : : ; xSm);
wherexSi denotes the projection ofx onto the coordinates speci-
fied bySi.

The key property of this generator used in [NW94, IW97] is
that the stringsxSi behave as if they are independent when they
are used as inputs to a hard function. LetP : f0; 1g` ! f0; 1g be
any predicate. Then the NW pseudorandom generator usingP is a
functionNW-PRGP̀;m: f0; 1gd ! f0; 1gm given byNW-PRGP̀;m(x) = P (x1)P (x2) � � �P (xm);

where(x1; : : : ; xm) = NW`;m(x)



The main theorem of [NW94] is that ifP is taken to be a suffi-
ciently hard (on average) predicate,NW-PRGP̀;m is a good pseu-
dorandom generator.

Theorem 4 ([NW94]) SupposeP : f0; 1g` ! f0; 1g is a predi-
cate such that no circuit of sizes can computeP correctly on
more than a fraction12 + "m of the inputs.NW-PRG`;m is an(s�O(m2 logm); ") pseudorandom generator.

The pseudorandom generators produced by this theorem can be
spectacular, as the seed lengthd = O(`2= logm) can be much
smaller than (even logarithmic in) the number of output bitsif P is
sufficiently hard. The main drawback is that the hypothesis is also
extremely strong (in thatP must be very hard on average), and
much work has been done to construct predicates that are strong
enough for Theorem 4 based on weaker assumptions [BFNW93,
Imp95, IW97, IW98]. In the next section, we analyze the quality
of this generator when only a mildly hard predicate is used.4 Pseudorandom generators via pseudoentropy
In this section, we show how to build a pseudorandom generator
out of a mildly hard predicate in a different (and arguably more
direct) way than [IW97]. Specifically, we show how to directly
build a “pseudoentropy generator” from a mildly hard predicate and
argue that applying an extractor to its output gives a pseudorandom
generator.4.1 Using a mildly hard predi
ate
Intuitively, the reason the NW pseudorandom generator works is
that wheneverxi is a “hard instance” ofP , P (xi) is indistinguish-
able from a random bit. IfP is very hard as in the hypothesis of
Theorem 4, then almost all inputs are hard instances. Thus, with
high probability all thexi’s will be hard instances and the limited
dependence of thexi’s guarantees that theP (xi)’s will look simul-
taneously random.

Now suppose thatP is instead only mildly hard, in the sense
that no small circuit can compute correctly on more than a1 � Æ
fraction of inputs, for some small but noticeableÆ. Intuitively,
this means that someÆ fraction of the inputs are extremely hard
for P . Thus, we’d expect that aÆ fraction of the output bits ofNW-PRGP̀;m are indistinguishable from random, so that we should
get some crude pseudorandomness out of the generator. In fact, this
intuition about hard instances can be made precise, using the fol-
lowing result of Impagliazzo [Imp95].

Theorem 5 (hardcore sets [Imp95])Suppose no circuit of sizes
can computeP : f0; 1g` ! f0; 1g on more than a1 � Æ fraction
of the inputs inf0; 1g`. Then, for every" > 0, there exists an"-
hardcore setH � f0; 1g` such thatjHj = Æ � 2` and no circuit of
sizes0 = 
("2Æ2s) can computeP correctly on more than a12 + "
fraction of the inputs inH.

Using this theorem, we can prove something about the output
of NW-PRGP̀;m when a mildly hard predicateP is used. Notice
that ifx is chosen uniformly at random, then each componentxi =xSi of the output ofNW`;m(x) is uniformly distributed inf0; 1g`.
Hence, theexpectednumber ofxi’s that land inH is Æm. Thus, the
earlier intuition suggests that the output ofNW-PRGP̀;m should
haveÆm bits of pseudorandomness, and this is in fact true.

Theorem 6 Suppose no circuit of sizes can computeP : f0; 1g` !f0; 1g on more than a1� Æ fraction of the inputs inf0; 1g`. Then,
for every" > 0, there is a distributionD onf0; 1gm of (Shannon)

entropy7 at leastÆm such that no circuit of sizes0 = 
("2=m2) �s�O(m2 logm) can distinguish the output ofNW-PRGP̀;m: f0; 1gd ! f0; 1gm fromD with advantage greater
than".
Proof: Let H be a("=Æm)-hardcore set forP , as given by
Theorem 5. We will show that the following distribution satisfies
the requirements of the theorem.Distribution D: Choosex uniformly from f0; 1gd. Let(x1; : : : ; xm) = NW(x). If xi 2 H, selectbi 2 f0; 1g uniformly
at random, and ifxi =2 H let bi = P (xi). Outputb1 � � � bm.8
First, we argue that the entropy ofD is at leastÆm. DefineN(x1; : : : ; xm) to be the number ofxi’s that are inH. Then for
anyx 2 f0; 1gd, the entropy ofDjx (i.e.,D conditioned onx) isN(NW(x))). By the definition of the Nisan-Wigderson generator,
eachxi is (individually) uniformly distributed and therefore lands
in H with probabilityÆ. By linearity of expectations, the expecta-
tion ofN(NW(x)) (over uniformly selectedx) is Æm. Thus, since
conditioning reduces entropy (cf., [CT91, Th. 2.6.5]),H(D) � Ex [H(Djx)℄= Ex [N(NW(x))℄= Æm

Now we show thatD andNW-PRGP̀;m are computationally
indistinguishable. Suppose that some circuitC distinguishes the
output ofNW-PRG`;m from D with advantage greater than".
We will show thatC must be of size at least
("2=m2) � s �O(m2 logm). By complementingC if necessary, we havePr hC(NW-PRGP̀;m(Ud)) = 1i� Pr [C(D) = 1℄ > ":
Forx 2 f0; 1g` andr 2 f0; 1g, defineQ(x; r) = � r if x 2 HP (x) otherwise.

Now consider “hybrids”D0; : : : ; Dm ofD andNW-PRGP̀;m(Ud)
defined as follows:DistributionDj : Choosex uniformly fromf0; 1gd and chooser1; : : : ; rm uniformly from f0; 1g. For j = 1; : : : ;m, let pj =P (xSj ) andqj = Q(xSj ; rj). Outputp1 � � � piqi+1 � � � qm.

Thus,D0 = NW-PRGP (Ud), andDm = D. By the “hybrid
argument” of [GM84] (cf. [Gol95, Sec. 3.2.3]), there is ani such
that "=m < Pr [C(Di�1) = 1℄� Pr [C(Di) = 1℄= Æ � Pr [C(Di�1) = 1 j xSi 2 H℄+ (1� Æ) Pr [C(Di�1) = 1 j xSi =2 H℄� Æ � Pr [C(Di) = 1 j xSi 2 H℄� (1� Æ) Pr [C(Di) = 1 j xSi =2 H℄= Æ � Pr [C(Di�1) = 1 j xSi 2 H℄� Æ � Pr [C(Di) = 1 j xSi 2 H℄ ;7Recall that the (Shannon) entropyof a distribution D is H(D) =P� Pr [D = �℄ log(1=Pr [D = �℄).8A similar “bit-flipping” technique is used in [HILL98] to prove their construction
of a false entropy generator.



where the last equality is becauseDi�1 andDi are identical con-
ditioned onxSi =2 H. Expanding and using the fact thatqi =Q(xSi ; ri) = ri whenxSi 2 H, we havePrx;r [C (p1 � � � pi�1riqi+1 � � � qm) = 1 j xSi 2 H℄� Prx;r [C (p1 � � � pi�1piqi+1 � � � qm) = 1 j xSi 2 H℄> "Æm;
wherex is chosen uniformly inf0; 1gd andri; : : : ; rm are selected
uniformly in f0; 1g. Renamingri asb and using the standard trans-
formation from distinguishers to predictors [Yao82] (cf. [Gol98,
Sec. 3.3.3]), we see thatPrx;b;r [C (p1 � � � pi�1bqi+1 � � � qm)� b = pi j xSi 2 H℄> 12 + "Æm
Recall thatpj (resp.,qj ) is defined to beP (xSj ) (resp.,Q(xSj ; rj)),
wherexSj is the projection ofx onto the bits specified bySj . Us-
ing an averaging argument we can fixri+1; : : : ; rm, b, and all the
bits of x outsideSi while preserving the advantage in predictingpi = P (xSi). RenamingxSi asz, we now observe thatz varies
uniformly overH while pj for j < i andqj for j > i are now
functionsPj of z that depend on onlyjSi \ Sj j � logm bits ofz.
So, we havePrz [C (P1(z) � � �Pi�1(z)bPi+1(z) � � �Pm(z))� b = P (z)℄> 12 + "Æm:

EachPj can be computed by a circuit of sizeO(m logm),
since every function oflogm bits can be computed by a circuit
of that size. Incorporating these circuits andb into C, we obtain a
circuitC0 of sizesize(C) +O(m2 logm) such thatPrz �C0(z) = P (z)� > 12 + "Æm:

Now, sinceH is ("=Æm)-hardcore forP as in Theorem 5,C0
must have size greater than
(Æ2 � ("2=Æm)2) � s = 
("2=m2) � s,
and henceC must have size greater than
("2=m2)�s�O(m2 logm).
Thus, using a mildly hard predicate with the NW generator, we
can obtain many bits of crude pseudorandomness. A natural next
step would be to try to “extract” this crude pseudorandomness and
obtain an output that is indistinguishable from the uniformdistri-
bution. Unfortunately, one cannot hope to extract uniformly dis-
tributed bits from a distribution that just has high Shannonentropy.
Extraction is only possible from distributions that have high min-
entropy. Recall that a distributionD on a finite setS is said to have
min-entropyk if for all x 2 D, Pr [X = x℄ � 2�k.

The reason that we were only able to argue about Shannon en-
tropy in Theorem 6 is that we could only say thatÆm xi’s land inH
on average. To obtain a result about min-entropy, we would need
to guarantee that manyxi’s lie in H with high probability. Clearly,
this would be the case if thexi’s were generated pairwise indepen-
dently instead of via the NW generator. But we also need the spe-
cial properties of the NW generator to make the current argument
about indistinguishability work. Following [IW97], we resolve this
dilemma by taking the XOR of the two generators to obtain a new
generator with the randomness properties of each.9 That is, we9[IW97] take the XOR of the NW generator with a generator coming from a ran-
dom walk on an expander.

obtainx1; : : : ; xm from a seedx using the NW generator, we ob-
tain y1; : : : ; ym pairwise independent from a seedy, and then usez1 = x1 � y1; : : : ; zm = xm � ym as the inputs to the predi-
cateP . As we will see in the next section, this gives a generator
whose output is indistinguishable from some distribution with high
min-entropy, as desired.4.2 A pseudoentropy generator.
The following definition (following [HILL98]) formalizes the type
of generator we obtain.

Definition 7 A generatorG: f0; 1gd ! f0; 1gm is a(k; s; ") pseu-
doentropy generatorif there is a distributionD onf0; 1gm of min-
entropyk such that no circuit of sizes can distinguish the output ofG fromD with advantage greater than".
Remark 8 The above definition differs from that of [HILL98] in
several ways. Most importantly, we require the output to be in-
distinguishable from having high min-entropy, whereas they only
require that it be indistinguishable from having high Shannon en-
tropy. They later convert to the Shannon entropy to min-entropy by
taking many samples on independent seeds, but we cannot afford
the extra randomness needed to do this. Other differences are that
we ask for indistinguishability against circuits rather than uniform
adversaries, that we do not require thatG be computable in poly-
nomial time, and that we do not explicitly ask thatk be larger thand (though the notion is uninteresting otherwise).

Recall that we need a way of generating many pairwise inde-
pendent strings from a short seed.

Lemma 9 ([CG89] (see also [Gol97a]))For any` 2 N andm �2`, there is a generatorPI`;m: f0; 1g3` ! (f0; 1g`)m such that
for y selected uniformly at random, the random variablesPI`;m(y)1,: : :,PI`;m(y)m are pairwise independent. MoreoverPI`;m is com-
putable in timepoly(`;m).

Let P : f0; 1g` ! f0; 1g be any predicate, letm be any posi-
tive integer, and letd be the seed length ofNW`;m. Then our pseu-
doentropy generator usingP is a functionPEP̀;m: f0; 1gd+3` !f0; 1gm given byPEP̀;m(x; y) = P (x1 � y1)P (x2 � y2) � � �P (xm � ym);
where(x1; : : : ; xm) = NW`;m(x) and (y1; : : : ; ym) = PI`;m(y)

The following theorem, whose proof can be found in the full
version of the paper [STV98], confirms that this construction does
in fact yield a pseudoentropy generator.

Theorem 10 Suppose no circuit of sizes can computeP : f0; 1g` !f0; 1g on more than a1� Æ fraction of the inputs inf0; 1g`. Then,
for any m � 2`, PEP̀;m: f0; 1gd+3` ! f0; 1gm is a (k; s0; ")
pseudoentropy generator, with

seed length= d+ 3` = O(`2= logm)
pseudoentropy= k = Æm=2
adversary size= s0 = 
(1=Æ2m4) � s�O(m2 logm)

adversary’s advantage= " = O(1=Æm)
Moreover,PEP̀;m is computable in timepoly(m; 2`2= logm) withm oracle calls toP .



4.3 Extra
ting the randomness
The tool we will use to transform our pseudoentropy generator into
a pseudorandom generator is anextractor.

Definition 11 A functionEXT: f0; 1gm � f0; 1gd ! f0; 1gm is
a (k; ")-extractorif for every for every distributionD on f0; 1gm
of min-entropyk, EXT(D;Ud) has statistical difference at most"
fromUn.

We will make use of the following recent construction of ex-
tractors:

Theorem 12 ([Tre98]) For everym, k, and " such thatk � m,

there is a(k; ")-extractor EXT: f0; 1gm � f0; 1gd ! f0; 1gpk
such that d = O� log2(m=")log k �
and EXT: f0; 1gm � f0; 1gd ! f0; 1gpk is computable in timepoly(m; d).

The following lemma (proved in the full version of the pa-
per [STV98]) confirms the intuition that applying an extractor to
a distribution that is computationally indistinguishablefrom a dis-
tribution with high min-entropy should yield a distribution that is
indistinguishable from uniform.

Lemma 13 SupposeG: f0; 1gd1 ! f0; 1gm is a (k; s; "1) pseu-
doentropy generator andEXT: f0; 1gm �f0; 1gd2 ! f0; 1gn is a(k; "2)-extractor computable by circuits of sizet. ThenG0: f0; 1gd1+d2 ! f0; 1gn defined byG0(u; v) = EXT(G(u); v)
is a (s� t; "1 + "2) pseudorandom generator.

Summing up, we have the following theorem:

Theorem 14 There is a universal constant
 > 0 such that the
following holds. LetP : f0; 1g` ! f0; 1g be any predicate such
that no circuit of sizes can computeP correctly on more than a1 � Æ fraction of the inputs, wheres � 2` and Æ � s�
 . Definen = s
 andm = 2n2=Æ and letPEP̀;m: f0; 1gd1 ! f0; 1gm be
the(Æm=2;
(1=Æ2m4) � s�O(m2 logm); O(1=Æm)) pseudoen-
tropy generator of Theorem 10 and letEXT: f0; 1gm�f0; 1gd2 !f0; 1gn be the(Æm=2; 1=Æm)-extractor of Theorem 12. LetPE-PRGP : f0; 1gd1+d2 ! f0; 1gn be defined byPE-PRGP (u; v) = EXT(PEP̀;m(u); v):

Then,PE-PRGP is a (s0; ") pseudorandom generator with

output length= n = s

seed length= d1 + d2 = O� `2log s�

adversary size= s0 = ps
adversary’s advantage= " = O(1=n2);

Moreover,PE-PRGP can be evaluated in time2O(`2= log s) withO(n2=Æ) oracle calls toP .

In particular, supposeP is a predicate inE such that no circuit
of sizes = 2�` can computeP correctly on more than a1 � Æ =1�1=poly(`) fraction of the inputs. Then the output length isn =2
(`), the seed length isO(`) = O(log n), no circuit of sizes0 =2
(`) can distinguish the output from uniform, and the generator

can be evaluated in timepoly(n), so the resulting pseudorandom
generator is sufficiently strong to obtainP = BPP.

Proof: By Theorem 10,d1 = O� `2logm + `� � O� `2log s� :
By Theorem 12,d2 = O0� log2 � m1=Æm�log(Æm=2) 1A = O(log s) � O� `2log s� ;
and EXT is computable in timet = poly(m; d2) = poly(m).
By Lemma 13, no circuit of sizes0 can distinguish the output ofPE-PRG from uniform wth advantage greater thanO(1=Æm) =O(1=n2), wheres0 = 
(1=Æ2m4) �s�O(m2 logm)� t � 
(s1�10
 )�poly(s
)
By choosing
 sufficiently small,s0 will always be at least

ps.
Remark 15 As mentioned earlier, Håstad et al. [HILL98] intro-
duced the notion of a pseudoentropy generator and showed that
the crude pseudorandomness of such a generator can be extracted
to yield a pseudorandom generator. Their work is in the “crypto-
graphic” setting, in which the generators must be computable in
time polynomial in theseed lengthand hence one can only hope
for the output to be polynomially longer than the seed (rather than
exponentially, as we obtain). Hence throughout their construction
they can afford super-linear increases in seed length, whereas pre-
serving the seed length up to linear factors is crucial for obtaining
pseudorandom generators good enough forP = BPP. For exam-
ple, they can afford to use randomness-inefficient extractors such
as 2-universal hash functions, whereas we require extractors which
use only a logarithmic number of truly random bits, which have
only been constructed recently [Zuc96, Tre98].10
Remark 16 The output of the pseudoentropy generatorPEP̀;m con-
structed in Theorem 10 is actually “nicer” than stated. Specifically,
it is indistinguishable from aoblivious bit-fixing source— that is,
a distribution on strings of lengthm in whichm � k bit positions
are fixed and the otherk bit positions vary uniformly and indepen-
dently. Such sources were the focus of the “bit extraction problem”
studied in [Vaz85, BBR85, CGH+85, Fri92] and the term “obliv-
ious bit-fixing source” was introduced in [CW89]. To see thatthe
output ofPEP̀;m is indistinguishable from an oblivious bit-fixing
source, simply observe that the distributionD given in the proof
of Theorem 10 is such a source.11 Extracting from oblivious bit-
fixing sources in which all butk bits are fixed is an easier task than
extracting from a general source of min-entropyk, and already in
[CW89] there are (implicitly) extractors sufficient for ourpurposes.5 Algebrai
 ampli�
ation of hardness
Recall the main theorem of Nisan and Wigderson (Theorem 4) that
states that given a hard predicateP : f0; 1g` ! f0; 1g, one can get10 Indeed, the term “extractor” was not even present at the timeof [HILL98] and the
first constructions of randomness-efficient extractors used their Leftover Hash Lemma
as a starting point.11Actually,D is aconvex combinationof oblivious bit-fixing sources. DistributionX is said to be a convex combination of distributionsX1; : : : ;Xt if there is a distri-
bution onI onf1; : : : ; tg such thatX can be realized by choosingi 2 f1; : : : ; tg
according toI , taking a samplex fromXi, and outputtingx. It is easy to see that any
extractor for oblivious bit-fixing sources also works for convex combinations of them.



a pseudorandom generator. The requirement of a hard predicateP in this theorem can be replaced with a requirement of a hard
function (with many bits of output) using the hardcore predicate
construction of Goldreich and Levin [GL89] (see also [Gol97b]).
Given a functiong: f0; 1gk ! f0; 1g`, the hardcore predicate forg is the functionGLg: f0; 1gk+` ! f0; 1g given byGLg(x; r) = hg(x); ri; for x 2 f0; 1gk andr 2 f0; 1g`;
wherehu; vi denotes the mod-2 inner product ofu = (u1; : : : ; u`)
andv = (v1; : : : ; v`) (i.e.,

Pì=1 uivi (mod 2)).
Theorem 17 ([GL89]) There exists a constant
 s.t. the following
holds. Ifg: f0; 1gk ! f0; 1g` is a function such that no circuit of
sizes can computeg correctly on more than an" fraction of the
inputs, thenGLg: f0; 1gk+` ! f0; 1g is a predicate such that no
circuit of sizes0 = 
(( "k` )
 � s) can computeP correctly on more
than a fraction12 + 2" of the inputs.

Thus the two theorems above show that it suffices to construct
hard functionsto obtain pseudorandom generators. The approach
of Impagliazzo and Wigderson is to start from a predicateP that is
hard in the worst case (i.e., no small circuit computes it correctly
on all inputs); then to use a low-degree extension ofP to obtain
a polynomial function̂p that is mildly hard on the average. They
then apply two different XOR lemmas to obtain a functions that
grow harder; eventually obtaining as hard a function as required in
Theorem 17. We use an alternate approach for this sequence by
showing directly that the function̂p above is very hard; as hard as
required for the combination of Theorems 4 and 17. We start by
specifying the properties of the low-degree extension; a proof of
following standard lemma can be found in the full version of this
paper [STV98].

Proposition 18 For everyÆ, ` and predicateP : f0; 1g` ! f0; 1g,
there existsm, d 2 N, a fieldF , and a polynomial̂p:Fm ! F
(the low-degree extension) of total degreed satisfying the following
properties:

1. m log jF j � 4`, djF j � Æ, andjF j � poly(`=Æ).
2. If TP and Tp̂ denote the worst-case computation times (or

circuit sizes) forP and p̂ respectively, thenTP � Tp̂ � poly(2`TP )
(p̂ is harder thanP but not too much harder, especially ifP
has time complexity2O(`).)

In the following section we prove the following theorem.

Theorem 19 There exists a constant
 s.t. if some functionf :Fm !F computed by a circuit of sizes agrees with a degreed polyno-
mial p̂:Fm ! F on " � 
pd=jF j fraction of the inputs, then
there exists a circuit of sizes � poly(md log jF j=") that computesp̂ correctly everywhere.

Putting together the above we get:

Theorem 20 There exists a universal constant
 > 0 such that the
following holds: LetP : f0; 1g` ! f0; 1g be a function that is not
computed by any circuit of sizes, wheres � 2`. Letm; d; F; p̂
be as guaranteed to exist by Proposition 18 forÆ = s�7
 . Let`0 = 4`+log jF j andQ: f0; 1g`0 ! f0; 1g be given byQ = GLp̂
(wherep̂ is now viewed as a function from4` bits to log jF j bits).

Then, forn = s
 , NW-PRGQ̀0;n: f0; 1gt ! f0; 1gn is an (s0; ")
pseudorandom generator with

output length= n = s

seed length= t = O� `2log s�

adversary size= s0 = ps
adversary’s advantage= " = O(1=n2);

Moreover,PE-PRGP can be evaluated in time2O(`2= log s) with
access to the entire truth table ofP .5.1 The re
onstru
tion pro
edure
First, a bit of terminology:

Definition 21 A randomized procedureA is said tocomputea func-
tion f :X ! Y at a pointx 2 X if Pr [A(x) = f(x)℄ � 3=4,
where the probability is taken over the internal coin tossesof A.
We say thatA hasagreement� 2 [0; 1℄ with f if A computesf on
an� fraction of the inputs inD. We say thatA computesf if it has
agreement 1 withf .

Now we prove Theorem 19 by providing a uniform solution to
the following “multivariate reconstruction problem”.

Given: An oraclef :Fm ! F and parametersd 2 N and" 2 R.
Goal: Reconstruct (an implicit representation for) every polyno-
mial that has"-agreement with the functionf . Specifically, con-
struct randomized oracle machinesM1; : : : ;Mk such that for every
polynomialp:Fm ! F of degreed that has (relative) agreement" with f , there existsj 2 [k℄ such thatMfj computesp.

We will be interested in the running time of the “reconstruction pro-
cedure”, i.e., the time taken to generate the machinesM1; : : : ;Mk,
as well as the running times of the machinesM1; : : : ;Mk.

Theorem 22 There exists a constant
 such that the reconstruction
problem above can be solved in timepoly(md log jF j="), with the
running time of each of the oracle machines listed in the output
beingpoly(md log jF j="), provided" > 
pd=jF j.
Remark 23 1. This theorem is a strengthening of a theorem

due to [AS97]. In particular, the lower bound on" here is
smaller than that of [AS97], who obtain an unspecified poly-
nomial ind and 1jF j . Furthermore, our proof is simpler and
in particular does not require “low-degree testing.”

2. The bound of
(pd=jF j) is within a constant factor of the
bound for the univariate case. The constant
 above is not
optimized in this writeup. But our methods can push it down
to any constant greater than2. For the univariate case, this
constant is1. No inherent reason is known for the gap.

Observe that Theorem 19 follows immediately from Theorem 22.
We have formulated the multivariate reconstruction problem in such
a way that an efficient solution to it (as in Theorem 22) immediately
implies a hardness amplification result. It should be clear that the
connection actually applies to any error-correcting code for which
there exist efficient algorithms for encoding (as in Proposition 18)
and “list-decoding” (that is, finding efficient oracle machines for
every codeword that agrees with a given oraclef in sufficiently
many places). The “rate” of the code determines how the input
length of the function changes when we encode it (e.g. in Proposi-
tion 18, input length̀ becomesm log jF j � 4` and linear growth



like this is needed to obtain the result of [IW97]). The amount of
agreement for which the list-decoding works determines howhard-
on-average the encoded function is. The running time of the oracle
machines produced in the reconstruction procedure determines the
circuit size for which the hardness amplification works.

We now move on to the proof of Theorem 22. Fix an oraclef :Fm ! F and a degreed polynomialp:Fm ! F with Æ agree-
ment withf . We observe that it suffices to reconstruct a (random-
ized) oracle machineM such thatMf has sufficiently high agree-
ment withp. This is due to the existence of “self-correctors” of
polynomials [BF90, Lip89, GLR+91, GS92]. Specifically, we use
the following theorem:

Theorem 24 ([GLR+91]) There exists a randomized oracle ma-
chineCorr taking as parameters integersd andm and a fieldF
such that on access to an randomized oracleM :Fm ! F with
agreement1516 with some degreed polynomialp, CorrM computesp in timepoly(d;m) providedjF j � 2(d+ 1).

As in the algorithms of [BF90, Lip89, GLR+91], we use the
properties of “lines” in them-dimensional spaceFm, defined be-
low.

Definition 25 The line throughx; y 2 Fm, denotedlx;y, is the

parametrized set of pointsflx;y(t)def=(1 � t)x + ty j t 2 Fg.
Given a functionf :Fm ! F , f restricted to the linelx;y is the
functionf jlx;y :F ! F given byf jlx;y (t) = f(lx;y(t)).

Notice that iff is a polynomial of total degreed, thenf jlx;y (t)
is a univariate polynomial of degree at mostd. Our strategy, to
reconstruct the value ofp at a pointx, is to look at a random line
going throughx. On this linep turns into a univariate polynomial.
Furthermore, the random line through the randomly chosen pointx is a “pairwise independent” collection of points fromFm. Thusp andf will have agreement close toÆ on this line as well. Thus
the goal of findingp(x) “reduces” to the goal of reconstructingp
restricted to this line, i.e., a univariate reconstructionproblem, a
problem that has been addressed in [ALRS92, Sud97, GS98]. In
particular, we use the following theorem.

Theorem 26 ([Sud97]) Given a sequence ofn distinct pairsf(ti; vi)gni=1, ti; vi 2 F and integer parametersd; k, a list of
all polynomialsg1; : : : ; gl satisfyingjfi 2 f1; : : : ; ngjgj(ti) =vigj � k, can be reconstructed in timepoly(n; log jF j) providedk > p2dn. Furthermorel � 2nk .

We describe a family of reconstruction procedures,fMz;agz2Fm;a2F , that will be used to construct the machinesM1,: : :, Mk. To gain some intuition into the procedure below, it may
be helpful to consider only the machinesMz;p(z). The machines
take as parameters a positive real number", integersd andm, and
a fieldF .� Mz;a(x):

1. (Explicitly) find a list of distinct (univariate) polyno-
mialsg1; : : : ; gl such that this list includes all polyno-
mials that have agreement at least"=2 with f jlz;x and
does not include any polynomial with agreement less
than"=4.

2. If there exists a unique indexi 2 f1; : : : ; lg such thatgi(0) = a, then outputgi(1), else output anything.

Remark 27 1. Step 1 above can be computed in time polyno-
mial in 1=", log jF j andd as follows: IfF is small enough,
then we lett1; : : : ; tn be all the elements ofF and invoke
Theorem 26 on the setf(ti; f(lz;x(ti)))gni=1 with k = "n=2.

(Note thatk > p2dn as long as" > 2pd=jF j, which is
true by hypothesis.) IfF is too large to do this, then setn =poly(d=") and pickt1; : : : ; tn distinct at random fromF and
then invoking Theorem 26 on the setf(ti; f(lz;x(ti)))gni=1
with k = "n=4. Since there are at most4=" polynomials
with agreement at least"=2with f jlz;x (by the “furthermore”
part of Theorem 26), the choice ofn guarantees that with
high probability, all of these polynomials agree withf jlz;x
on at least"n=4 of theti ’s. As the choice ofn also guaran-
tees thatk = ("n=4) > p2dn, Theorem 26 yields a list con-
taining all polynomials with agreement at least"=2. Now, we
wish to discard all polynomials with agreement less than"=4
— this can be accomplished by comparing each polynomialg obtained withf jlz;x on a random sample ofpoly(1=")
points fromF and discarding it if it has agreement smaller
than"=3 on this sample.

2. The number of polynomials output in Step 1 above is at most8=" (by the “furthermore” part of Theorem 26.)

To shed some light on the steps above: We expect thatpjlz;x is
one of thegi’s returned in Step (1) above. In Step (2) we try to find
out whichgi to use by checking to see if there is a unique one which
hasgi(0) = a (recall thatpjlz;x(0) = p(z)), and if so we use this
polynomial to outputp(x) = pjlz;x(1) = gi(1). This intuition is
made precise in the Section 5.2. We now finish the descriptionof
the reconstruction procedure.� Reconstruction algorithm.

– Repeat the followingO(log(1=")) several times:

1. Pickz 2 Fm at random.
2. Picky 2 Fm at random.
3. Find a list of univariate polynomialsh1; : : : ; hl

including all polynomials with agreement at least"=2 with f jlz;y .12
4. For every polynomialhj , include the oracle ma-

chineCorrMz;hj (0) in the output list.5.2 Analysis of the polynomial re
onstru
tion pro-
edure
Now we show that the reconstruction algorithm runs in time run in
time poly(md" log jF j) and outputs a list of oracles that includes
one for every polynomialp that has" agreement withf . Theo-
rem 22 follows immediately.

The claim about the running time is easily verified. To analyze
the correctness, it suffices to show that in any iteration of Steps 1–4
in Reconstruction Algorithm, an oracle computingp is part of the
output with, say, constant probability for any fixed polynomial p of
degreed that has" agreement withf . We show this in two parts.
First we argue that for most choices ofz, Mz;p(z) is an oracle that
computesp on15=16 of all inputs (and thusCorrMz;p(z) computesp everywhere). Then we show that for most pairs(z; y), there existsj s.t. the polynomialhj reconstructed in Step 3 satisfieshj(0) =p(z).
Lemma 28 There exists a constant
 s.t. for everyd, F , " satisfy-
ing 1 � " � 
pd=jF j, it is the case thatPrx �Mz;p(z)(x) = p(x)� � 15=16;
with probability at least12 over the random choice ofz 2 Fm,12This is done as in Remark 27, though here we do not care if the list contains extra
polynomials with low agreement.



Proof: We first argue that when bothx andz are picked at random,
certain bad events are unlikely to happen. The next two claims
describe these bad events and upper bound their probability.

Claim 29 If " � 16p1=jF j, thenPrx;z � 6 9i 2 [l℄ s.t.gi = pjlz;x� � 1=64:
Proof: For the polynomialpjlz;x not to be included in the output
list it has to be the case thatp andf do not have"=2 agreement on
the line lz;x. But the line is a pairwise independent collection ofjF j points inFm. The quantity of interest then is the probability
that a random variable with expectation" attains an average of at
most"=2 on jF j samples. Using Chebychev’s inequality, this prob-
ability may be bounded by4"jF j � 4"162 � 164.

Claim 30 If " � 32pd=jF j, thenPrx;z �9j 2 [l℄ s.t.gj 6= pjlz;x andpjlz;x(0) = gj(0)� � ldjF j � 1=64:
Proof: For convenience in this argument, assume thatMz;p(z)
finds all polynomials of agreement at least"=4 with f jlz;x rather
than just a subset, as that is clearly the worst case for the claim.
Now, instead of pickingx andz at random and then lettingg1; : : : ; gl
be all degreed polynomials with"=4 agreement withf jlz;x , we
first pick z0; x0 independently and uniformly at random fromFm;
and letg01; : : : ; g0l0 be all univariate degreed polynomials with"=4
agreement withf jlz0;x0 . We now pick two distinct elementst1; t2
uniformly fromF and letz = lz0;x0(t1) andx = lz0;x0(t2). Notice
that we can expressz0 = lz;x((t2� t1)�1 � t2) andx0 = lz;x((t2�t1)�1 � (t2 � 1)). Thus the lineslz;x andlz0;x0 contain the same

set of points and thus the polynomialsgi(t)def= g0i(t2+ t � (t1� t2))
are exactly the set of polynomials with"=4 agreement withf jlz;x .
Thus the event “pjlz;x 6= gj andpjlz;x(0) = gj(0)” is equivalent to
the event “pjlx0;z0 6= g0j andpjlx0;z0 (t1) = g0j(t1)”, wheret1 is be-

ing chosen at random. This probability is at mostdjF j for any fixedj
and thus the probability that there exists aj s.tpjlx0;z0 (t1) = g0j(t1)
is at mostl � djF j . Froml � 8" and1 � " � 32pd=jF j, the claim
follows.

Discounting for the two possible bad events considered in Claims 29
and 30, we find that with probability at least1 � 132 , there ex-
ists a polynomialgi returned in Step 1 ofMz;p(z) such thatgi =pjlz;x ; furthermore, this is the unique polynomial such thatgi(0) =pjlz;x(0) = p(z). Thus the output isgi(1) = pjlz;x(1) = p(x).

Thus with probability at least31=32, we find that for a random
pair (z; x), Mz;p(z) computesp(x). An application of Markov’s
inequality now yields the desired result.

Lemma 31 With probability at least1� 164 , one of the polynomials
reconstructed in any one execution of Step 3 ofReconstruction
Algorithm is pjlz;y ; and thus one of the oracles created in Step 4
is CorrMz;p(z) , providedjF j is large enough.

Proof: As in Claim 29 we argue thatp andf have at least"=2
agreement on the linelz;y and thenpjlz;y is one of the polynomials
output in this step. Thus one of the oracles created isCorrMz;a fora = pjlz;y (0) = p(z).

Proof of Theorem 22: Fix any degreed polynomial p with "
agreement withf . Combining Lemmas 28 and 31 we find that with
probability31=64, one of the oracles output by the reconstruction
algorithm isCorrMz;p(z) ; andz is such thatMz;p(z) computesp(x)
for at least15=16 fraction ofx’s in Fm; and thus (by Theorem 24)CorrMz;p(z) computesp on every input.

Repeating the loopO(log 1" ) times ensures that every polyno-
mial p with " agreement withf is included in the output with high
probability, using the well-known bound that there are onlyO(1=")
such polynomials (cf., [GRS98, Theorem 17]).A
knowledgments
We thank Oded Goldreich, Amnon Ta-Shma, and Avi Wigderson
for clarifying discussions and pointing us to some related work.Referen
es
[ACR97] Alexander Andreev, Andrea Clementi, and José Rolim. Worst-
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