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Abstract

We construct a system H of exp(clog” n/loglogn) subsets of a set
of n elements such that the size of each set is divisible by 6 but their
pairwise intersections are not divisible by 6. The result generalizes
to all non-prime-power moduli m in place of m = 6. This result is
in sharp contrast with results of Frankl and Wilson (1981) for prime
power moduli and gives strong negative answers to questions by Frankl
and Wilson (1981) and Babai and Frankl (1992). We use our set-system
‘H to give an explicit Ramsey-graph construction, reproducing the log-
arithmic order of magnitude of the best previously known construction
due to Frankl and Wilson (1981). Our construction uses certain mod
m polynomials, discovered by Barrington, Beigel and Rudich (1994).

1 Introduction

Generalizing the Ray-Chaudhuri— Wilson theorem [8], Frankland Wilson [6]
proved the following intersection theorem, one of the most important results
in extremal set theory:
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Theorem 1.1 (Frankl-Wilson) Let F be a set-system over a universe of
n elements. Suppose g, 41, ..., ts are distinct residues modulo a prime p,

such that for all F € F,
Fl=k=po (mod p),
where k 4+ s < n, and for any two distinct F,G € F:

|FNG| = p; (mod p) for some i, 1 <i<s.

7] < (Z) (1)

This theorem has numerous applications in combinatorics and in geom-
etry (e.g., the disproof of Borsuk’s conjecture by Kahn and Kalai [7] (cf.
[1], Sec. 5.6.), an explicit construction of Ramsey graphs, and geometric
applications related to the Hadwiger-problem [6].)

Frankl and Wilson [6] asked whether inequality (1) remains true when
the modulus p is replaced by a composite number m, or at least in the
subcase s = m — 1.

Frankl [5] answered the first of these questions (arbitrary s < m) in the
negative: he constructed faster growing set-systems for m = 6, as well as
for m = p?, p prime. For m = 6, Frankl’s set-systems satisfy s = 3 and
|F| ~ en?.

On the other hand, Frankl and Wilson [6] proved that inequality (1)
remains in force when s = m — 1 and m is a prime power.

Then

In this paper we consider non-prime-power moduli m. For any such
modulus, we give a very strong negative answer to both versions of the
Frankl-Wilson question: we prove that for s = m — 1, no upper bound of
the form n/(™) exists. More precisely, we prove the following.

Theorem 1.2 Let m be a positive integer, and suppose that m has r > 1
different prime divisors: m = p{'p5*...p27. Then there exists c = c¢(m) > 0,
such that for every integer h > 0, there exists an explicitly constructible
uniform set-system H over a universe of h elements, such that

(a) |H| > exp <C%);
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(b) VH e H: |[H =0 (mod m),
(¢)VG,HeH,G#H: |GNH|#0 (mod m).

Remark 1.3 The value of ¢ is roughly p; ", where p, is the largest prime
divisor of m. The size of the sets in the set-system we construct is

h2rr—_11 +o(1). (2)

We note that for fixed m (m is not a prime power), the size of H grows
faster than any polynomial of n. This is quite surprising, since previously
it was believed that the failure of the attempts to prove a polynomial up-
per bound was due to the lack of techniques to handle non-prime-power
composite moduli.

Our result gives a strong negative answer to a conjecture of Babai and
Frankl ([1], Section 7.3, Conjecture C(r)). Babaiand Franklconjectured that
conditions (b) and (c) of Theorem 1.2 imply

h
< .
7 < (m_l),

whereas our result shows that no bound of the form Af(™) exists for com-
posite, non-prime power moduli m.
We can even strengthen statement (c) of Theorem 1.2 as follows:

Theorem 1.4 Theorem 1.2 remains valid if we add the following condition:

(d) VG,H € H, G # H and ¥i € {1,2,...,r}, we have |G N H| = 0
(mod p;*) or [GNH|=1 (mod p;*).

Remark 1.5 Theorem 1.4 implies that there exist super-polynomial size
set-systems H such that the size of each set in H is divisible by m and the
sizes of the pairwise intersections of the sets in # occupy at most 2" — 1
residue classes mod m out of the possible m — 1 nonzero residue classes.

In fact, this result can be further strengthened: 3 residue classes of in-
tersection size suffice! This answers a question of Peter Frankl (private
communication).
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Corollary 1.6 Let m be a positive integer, and suppose that m has r > 1
different prime divisors: m = p{'pg*...p2". Then there exists c = ¢(m) > 0,
such that for every integer h > 0, there exists an explicitly constructible
uniform set-system H over a universe of h elements such that

/ oz h)2
(a) [H| > exp (Cl((l,g%:g)h);

(b) VH € H: |[H=0 (mod m),

(c) the sizes of the pairwise intersections |G N H| (G,H € H, G # H)
occupy only 3 residue classes mod m, none of which is 0.

One of the striking applications of the Frankl-Wilson theorem for prime
moduli was an explicit construction of graphs of size exp(clog? n/ loglog n)
without homogeneous subsets (cliques or anti-cliques) of size n. These
are the largest explicit Ramsey-graphs known to-date. As an applica-
tion of our Theorem 1.2 , we give an alternative construction of explicit
Ramsey graphs of the same logarithmic order of magnitude, i.e., of size
exp(c’'log? n/loglogn). (But our ¢ is less than their ¢).

A key ingredient of our construction is a low-degree polynomial con-
structed by Barrington, Beigel and Rudich [2], to represent the Boolean
“OR” function mod m. Any reduction of the degree of such polynomials
would yield improved explicit Ramsey graphs.

2 Preliminaries

Let f : {0,1}" — {0,1} be a Boolean function and let m be a positive
integer. Barrington, Beigel and Rudich [2] gave the following definition:

Definition 2.1 The polynomial P with integer coefficients weakly repre-
sents the Boolean function f modulo m if there exists an S C {0,1,2,...,m—
1} such that for all z € {0,1}",

f(z) =0<= (P(z) mod m) € S.
Here (a mod m) denotes the smallest non-negative b = a mod m.

We are interested in the smallest degree of polynomials representing f
modulo m. Without loss of generality we may assume P is multilinear (since
2? = z; over {0,1}").

.=
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Let OR,, : {0,1}" — {0, 1} denote the n—variable OR-function:

ORn(ml7$27-.-7$n) — {07 lfxl :.$2 T T e =0
1 otherwise.
Suppose that the polynomial P weakly represents OR,, modulo a prime
p. Without loss of the generality we may assume that for z € {0, 1}",

P(z)=0mod p < 2z =(0,0,...,0).

Then
1—- PP Y1 — 2,1 — 29,0y 1 — )

is exactly the n-variable AND function, which can uniquely be written as a
multilinear monomial
T1X2T3...0Tp.

Consequently, if the polynomial P weakly represents OR,, over GF(p), then
its degree is at least

=l

p-11

Tardos and Barrington [9] proved that the same conclusion holds if p is
a prime power.

On the other hand, Barrington, Beigel and Rudich [2] proved that the
conclusion fails for composite moduli with at least two distinct prime divi-
sors:

Theorem 2.2 (Barrington, Beigel, Rudich) Given m = p{'p32..p2~
where the p; are distinct primes, there exists an explicitly constructible poly-
nomial P of degree O(nl/r) which weakly represents OR,, modulo m.

For completeness, we reproduce here a short proof of this theorem.

Proof. Let Si(z) denote the jth elementary symmetric polynomial, i.e.
the sum of all multilinear monomials of degree k, formed from variables
T1, 29, ..., Tpn. For z € {0,1}", the weight of z is defined as wt(z) = Y7, ;.

If wt(z) = ¢, then
sk(z) = (i)

Since the value of si(z) depends only on wt(z), with some abuse of the
notation we shall write s;(z) as si(j) where j = wt(z). Using this notation,
one can formulate the following observation made in [2]:
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Lemma 2.3 [2] Let k be a positive integer, p be a prime and let e be the
smallest integer satisfying k < p°. Then si(j) = sk(j + p°) (mod p).

Proof. We need to prove

(j —|]—€pe) = (i) (mod p).

This is immediate from the identity

()50

and the elementary fact that for any 1 < £ < p®, p is a divisor of (p;). O

Now, for i = 1,2, ..., r, let e; be the smallest integer that satisfies
P> a1
We define, for ¢ = 1,2, ..., r, the symmetric polynomial G;(z) by

pii—1

Gi(z) = Y (=1)"*'s;(2).

i=1

One can easily prove (using the binomial expansion of (1 — l)p?_l), that G
correctly computes over the integers the OR function for inputs of weight
at most p;* — 1. Consequently, G; correctly computes modulo p; the OR
function for inputs of weight at most n'/", and, additionally, G; mod p; is
periodic with period p;.

And now, by the Chinese Remainder Theorem, there exists a polynomial
P which satisfies

P=dG; (mod p;)

for ¢+ = 1,2,...,r, and the degree of P is the maximum of the degrees of
polynomials G, O(nl/r).

It is obvious that for z € {0,1}", if wt(z) # 0 then there exists an ¢, 1 <
i < r, such that wt(z) Z 0 mod p{’, so P(z) # 0 mod p;p;...p,. In addition,
P(0,0,...,0) = 0. Consequently, P weakly represents the OR function for
all inputs in {0, 1} modulo pyp;...p.. Since pyps...p, is a divisor of m, if
P(z) is not 0 modulo pyps...p, then it is not 0 modulo m. Consequently, P
weakly represents the OR function for all inputs in {0, 1}” modulo m.
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a

Example. Let m = 6, and let

2851

Gi(z) = Y (=1)7*s (),

i=1

and
321

Gale) = 3 (-1)%55(0)
Then
P(z) = 3G (z) + 4G4 (2)

weakly represents O Rz; modulo 6 (or modulo 64 for any integer £), and its
degree is only 8.

Corollary 2.4 Let m = p{'p52...p%". Then there exists an explicitly con-
structible polynomial P’ with n variables and of degree O(nl/’") which is
equal to 0 on z = (0,0,...,0) € {0,1}", it is nonzero mod m for all other
z € {0,1}", and for all z € {0,1}" and for all ¢ € {1,...,r}, P(z) =0
(mod pi*) or P(z) =1 (mod p;*).

Proof:

Let us consider first the easy case, when a1 = a3 = -+ = o, = 1.
Then the statement is immediate from Lemma 2.3 and from the fact that
polynomials G; not only represent, but compute the OR function for inputs
of weight less than p;*.

In the general case, let us observe that (; is either 0 or 1 modulo p; on
{0,1}". Then we need the modulus-amplifying polynomials R; of degree 2«;
of Beigel and Tarui [3], with the following properties:

N=0 (modp;)= Ri(N)=0 (mod p;")

and
N=1 (modp)= R;(N)=1 (mod p;").

Now, set G = R; o G; and construct P’ by applying the Chinese Re-
mainder Theorem to the G. O
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3 The Lower Bound
Proof of Theorem 1.2.

Let P(z,z2,...,2,) be a polynomial of degree d which satisfies that
P(0,0,0,...,0) =0, and for every (z1, 22, ..., z,) € {0, 1}"

P(z1,22,..,2,) =0 (mod m) <=z =2 =..=z, = 0.
An explicit construction of such P of degree d = O(n'/") was given in
Theorem 2.2.

Let Q(z1,22, ..y 2n) = P(1— 21,1 =22, ..., 1 —=2,). Then Q(1,1,1,...,1) =0,
and for all z € {0,1}" we have

Q(2)=0 (modm)<= 21 =20=...= 2z, = 1. (3)
Using the polynomial () we state our main Lemma:

Lemma 3.1 For every integer n > 0, there exists a uniform set-system H
over a universe of 2(m — 1)n*?/d! elements which is explicitly constructible
from the polynomial () and satisfies

() |H]=n",
(b) VH e H: |[H|=0 (mod m),
(¢)VG,He H,G#H: |GNH|#0 (mod m).

Lemma 3.1 easily yields Theorem 1.2 setting d = ©(n'/") and using
elementary estimations for the binomial coefficients.

Proof of Lemma 3.1. () can be written as

Q(z1, 22, oey 2) = E Wiy igonrigZiy Zin - Zigy

11,02 5e0040g

where 0 < £ < d, and a;, ;,,...;, is integer, 1 <4y <y <--- <14y < n. Let us
define

Q(z1, 22, ey 2n) = E iy igonrigZiy Zin - Zigy (4)
11,02 500040g
where a;, 4,4,

gruent to a;, ;, . 4,

= (@i, 4p,....;, mod m) is the smallest, positive integer, con-
modulo m, for 1 <4; <9 < -+ < 1p < m.
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We note, that (3) is satisfied for @, but Q(1,1,1,...,1) is not necessarily 0.
Let the function & : {0,1,...,n—1} x {0, 1,...,n— 1} — {0, 1} be defined

as ‘
§(u, v) = {1, if u =v,
0 otherwise.
Let A = (agzy) be an n" x n” matrix (z,y € {0,1,2,...,n— 1}").
We define the entry a,, as follows:

Ay = Q(5($17 y1)7 5($27 y2)7 ceey 6('rm yn)) mod m. (5)

We note that a,, = Q(l, 1,...,1)=0 (mod m). Conversely, if a;, =0
(mod m) then z = y.

By equation (4), the polynomial Q(Z) is a sum of the monomials of the
form z;, 2;,...2;, (£ < d). We wish to keep all coeffcients equal to 1; therefore
we shall say that the monomial z;, z;,...2;, (¢ < d) occurs with multiplicity
G;, 4y,...i, in this sum. Note that each multiplicity is a nonnegative integer
<m-—1.

Consequently, the matrix A is a sum of the matrices B; ;... =
(bg_nl”yi?’“"i@), corresponding to the monomial z;, 2;,...2;, in the following way:

bi}j27m7ie = 5(3321 ) yi1)5($i2, yi2) e '5(33227 yie)‘

This matrix occurs in the sum with multiplicity a;, ;, .
It is easy to verify that B
matrix

ipe

i1,ia,rip 15 permutationally equivalent to the

Ji

(6)
0

J,e
where the diagonal blocks .J; are all-ones matrices of size n”~¢ x n"~*, and
there are exactly n¢ pairwise disjoint all-ones blocks in Bi,is,.i, “Permu-

tationally equivalent” means that there exists a permutation such that if it
is applied both to the rows and to the columns of the matrix, the result is
equal to (6). Let us refer to these all-ones blocks of B;, 4, . ;, as B-blocks. We
shall say that each B-block of B occurs with multiplicity a;,

i1 i2yeeris inyeensip®
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By equation (4), A can be written in the following form:

A= E : iy i ,onyigBiy i ,onig (7)

115025000400
Lemma 3.2 Tuking multiplicities into account,

(a) every cell of the main diagonal of A is covered by the same number of
B-blocks, and this number is divisible by m;

(b) for any pair of cells of the main diagonal of A, the number of those
B-blocks which cover both members of the pair, is not divisible by m.

Proof. We note that the number of B-blocks covering cell (z,y) is agy.
Now statement (a) follows by equation (3), observing that for all z,

e =Q(1,1,...,1) =0 (mod m).

For part (b), we note that the B-blocks are square submatrices, sym-
metric to the diagonal; therefore a B-block covers the cells (z,z) and (y,y)
exactly if it covers the cell (z,y). The number of B-blocks covering both
(z,z) and (y,y) is therefore a;, Z0 (mod m) , again by equation (3). O

Corollary 3.3 There exists an explicitly constructible hypergraph G with n™
vertices and fewer than 2(m — 1)n??/d! edges, such that every vertex is con-
tained in the same number of edges, and this number is divisible by m,; while
for any two vertices, the number of edges, containing both of the vertices,
is not divisible by m. (We allow multiple edges and take multiplicities into
account.)

Proof. From Lemma 3.2, choose the cells of the diagonal of A for the
vertices and the intersections of the B-blocks with the diagonal for edges
(with the corresponding multiplicity).

The number of edges is

h = Q(’IZ, LIRS n) = Z Z &il’h""’”né 5 (m - 1) E (Z) né

<d <d
< (m—-1) En“/f! < 2(m — 1)n*/dl,
<d

assuming, as we may, that n > 2d. O
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We note that the number of edges containing each vertex is

Q(,1,...,1)< (m-1) ((Z)-}-(dil)‘}‘(g)) <2(m—1)<Z)-

Now we are ready to complete the proof of Lemma 3.1.

Let us consider the dual of the hypergraph of Corollary 3.3, i.e., let the
universe be the set of B-blocks, and if a B-block was present @ times in the
hypergraph G, then it will correspond to a different points (or elements) in
the universe. Consequently, our universe is a set (rather than a multiset).
The size of the universe is h < 2(m — 1)n??/d!.

The diagonal cells of A correspond to the members of the set-system H:
the set corresponding to cell (z,z) consists of exactly those B-blocks which
cover (z,z). Therefore |H| = n".

Since every diagonal cell of A is covered by the same number of B-
blocks, the resulting H is a uniform set system. As discussed previously, this
number (the size of the members of H) is Q(1,1,...,1) < (m—1) Yo (%) <
2 — 1)(7).

From Corollary 3.3, statements (a), (b), (c) of Lemma 3.1 follow.O

Remark 3.4 We note from the foregoing that the number of vertices of H

is h = Q(n,n,...,n), and the number of vertices of each member of # is
Q(1,1,...,1). We note that Q(n,n,...,n) < n?Q(1,1,...,1).

To prove the estimate on the size of the members of H in terms of
h (the number of vertices of #) given in Remark 1.3, we first add dummy
vertices to increase h to its upper bound A’ := n? Q~(1, 1,...,1) stated above.
Now, since this quantity is still < 2(m — 1)n??/d!, we see, using the bound
d = O(n'/") guaranteed by Theorem 2.2, that

nd Z (hl) ﬁ+o(1)

and therefore the size of the members of H is

Q(L L., 1) < (hl) 2:"_—11'1'0(1)7

as claimed in equation (2). O
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Proof of Theorem 1.4. The statement is immediate if the polynomial P’
of Corollary 2.4 is used for the construction of the set-system H in the proof
of Theorem 1.2 in the place of the polynomial P.O

Proof of Corollary 1.6 Let m’ = p{"'p5?, and apply Theorem 1.4 for
constructing a set-system H for h and this m’. The intersections occupy
only 3 residue classes modulo m’. Now replace every point of the universe
by m/m’ new points; the new points will be the members of exactly the
same sets of the set-system as the old point. The statement follows. O

4 An Application: Ramsey Graphs

The set-system H of Theorem 1.2 yields new families of explicit Ramsey-
graphs.

Theorem 4.1 (Frankl-Wilson, 1981) Fort > 3, there exists an explic-

(logt)?
(loglogt)

either a complete graph or an independent set of size t.

itly constructible graph on exp (c ) vertices which does not contain

The constant ¢ given in [6] is ¢ = i. Our construction yields ¢ = 82—1 only.

In addition to giving a novel proof of Theorem 4.1, we extend it to the case
of several colors:

Theorem 4.2 Forr > 2, t > 3, there exists an explicitly constructible r—

coloring of the edges of the complete graph on exp (cr%) vertices

such that no color contains a complete graph on t vertices. Here c, = c¢/p?" ~

—2r th

c(rinr)=*", where p, is the r*"" prime, and ¢ > 0 is an absolute constant.

The ezistence of graphs with more than 2(=1/2 vertices without a com-
plete graph or an independent set of size ¢ is known from the famous theorem
of Erdds [4]. The probabilistic proof of that theorem immediately implies
the ezistence of an r-coloring of the edges of the complete graph on r(t=1)/2
vertices, without a monochromatic complete graph on t vertices.

For more than two colors, no explicit Ramsey-graph constructions seem
to have appeared prior to the present work. It does not seem immediate how
one could modify the Frankl-Wilson construction to more than two colors.
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Proof. Let m = pyps....p,, where p; is the i*" prime. Let K be a complete
graph on vertex—set H, where H is a set-system with the properties stated
in Theorem 1.2, with h = [t'/?"]. We define an r—coloring of the edges of
K by colors 1,2, ..., r as follows: edge UV, where U,V € H, has color ¢ if

i=_min {j:p; does not divide |[UNV]|}.
Je{1,2,...r}

Now suppose that K contains a monochromatic complete graph C; of ¢;
vertices in color 7. Then the sets, corresponding to the vertices of C;, give
a family of /; sets, such that the size of each set is divisible with p;, but the
size of the intersection of any two elements of this set—system is not divisible
by p;. Consequently, by Theorem 1.1,

EZS( h )<t.
pi—1

5 Open Problems

Problem 1 (Barrington, Beigel and Rudich [2]) Does there exist a poly-
nomial P in n variables, with integer coefficients, of degree d = o(y/n),
which weakly represents the n-variable OR function modulo 6? (Recall,
that this means that P(0,0,...,0) = 0, and P(z) # 0mod 6 for any
z € {0,1}",z#0.)

If the answer is yes for some d = n® and the polynomials are explicitly
constructed, then our method yields explicit Ramsey-graphs on

(log h)'/*
P <C (log log h)l/e—1>

vertices, with no complete subgraph and no independent set of size h.

For symmetric polynomials, Barrington, Beigel and Rudich [2] have
shown that the degree is Q(y/n).

Showing only the ezistence of polynomials, weakly representing the OR
function with degree o(y/n), would also have considerable theoretical in-
terest, since this result would imply the existence of larger set-systems in

Theorem 1.2. Here we should also mention that the best lower bound is due
to G. Tardos and Barrington [9]. They proved that if the modulus m has
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r > 1 different prime divisors, then every polynomial, weakly representing
the function OR,, modulo m, has degree at least

(logn)" /=1,

Problem 2 Does there exist a quadratic polynomial P in n variables, with
integer coefficients, which weakly represents the m-variable OR function
modulo 238, where both 2% and 37 are o(v/n)? If the answer is yes, then
combining this P and the polynomial of Barrington, Beigel and Rudich [2],
we would obtain a polynomial, satisfying the requirements of Problem 1.

Problem 3 It remains an open question whether, for a fixed positive integer
m, a better than exponential (exp(o(n)) upper bound holds for the size of
set-systems satisfying that the size of each set is divisible by m while the
sizes of their pairwise intersections are not divisible by m.

This problem is open even for m = 6. Our main result shows that if
m is not a prime power then no polynomial upper bound (O(n°)) holds.
(If m is a prime power then a polynomial upper bound holds by Frankl —
Wilson 1.1.)
Problem 4 If in Problem 3 we assume additionally that the sizes of the
pairwise intersections occupy only two residue classes mod m then there
may even be a polynomial upper bound (perhaps O(n?)), yet we are not
aware of any better-than-exponential upper bound even for this case. This,
too, is open for m = 6.
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