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Abstract

We describe a lower bound for the rank of any real matrix in which all diagonal entries are
significantly larger in absolute value than all other entries, and discuss several applications of
this result to the study of problems in Geometry, Coding Theory, Extremal Finite Set Theory
and Probability. This is partly a survey, containing a unified approach for proving various known
results, but it contains several new results as well.

1 Introduction

Let B = (bi,j) be an n by n real matrix. It is easy and well known that if for every i, |bi,i| >
∑
j 6=i |bi,j |,

then B is of full rank. Indeed, assuming this is false, let c = (cj) be a nonzero column vector so that
Bc = 0. Let |cr| = maxi |ci| ( > 0) and consider the component number r of Bc. The absolute value
of this component is

|
∑
j

br,jcj | ≥ |br,rcr| −
∑
j 6=r
|br,jcj | ≥ |cr|(|br,r| −

∑
j 6=r
|br,j |) > 0,

contradicting the assumption Bc = 0 and proving that B indeed has full rank. In particular, this
implies that if bi,i = 1 for all i and |bi,j | ≤ 1

n for all distinct indices i, j, then the rank of B is n.
Suppose we relax the conditions above, and only assume that each diagonal entry is, in absolute

value, at least 1/2 and the absolute value of each other entry is at most ε. In this case one can also
establish a lower bound for the rank of B, as stated in the following theorem.

Theorem 1.1 There exists an absolute positive constant c so that the following holds. Let B be an
n by n real matrix with |bi,i| ≥ 1/2 for all i and |bi,j | ≤ ε for all i 6= j, where 1

2
√
n
≤ ε < 1/4. Then

the rank of B satisfies
rank(B) ≥ c

ε2 log(1/ε)
log n.
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This theorem is a slight variation of a result proved in [1]. In this short paper we present the proof
of the theorem, and describe several applications in various areas. Some of these applications are
known, and some, including a solution of one of the open problems raised in [16], are new.

The rest of the paper is organized as follows. In Section 2 we present the proof of the theorem, in
Sections 3, 4, 5, 6 and 7 we describe its applications in Geometry, Coding Theory, Extremal Finite
Set Theory, the investigation of pseudo-random sequences, and the study of small sample spaces
supporting nearly independent random variables. The final Section 8 contains some concluding
remarks and open problems.

2 Perturbed identity matrices

It is convenient to first prove the following variant of Theorem 1.1.

Theorem 2.1 There exists an absolute positive constant c so that the following holds. Let B be an
n by n real matrix with bi,i = 1 for all i and |bi,j | ≤ ε for all i 6= j. If the rank of B is d, and

1√
n
≤ ε < 1/2, then

d ≥ c

ε2 log(1/ε)
log n.

This result is proved in [1]. For completeness, we reproduce the proof (omitting the final detailed
computation). We need the following well known lemma proved, among other places, in [8], [1].

Lemma 2.2 Let A = (ai,j) be an n by n real, symmetric matrix with ai,i = 1 for all i and |ai,j | ≤ ε
for all i 6= j. If the rank of A is d, then

d ≥ n

1 + (n− 1)ε2
.

In particular, if ε ≤ 1√
n

then d > n/2.

Proof: Let λ1, . . . , λn denote the eigenvalues of A, then their sum is the trace of A, which is n,
and at most d of them are nonzero. Thus, by Cauchy-Schwartz,

∑n
i=1 λ

2
i ≥ d(n/d)2 = n2/d. On

the other hand, this sum is the trace of AtA, which is precisely
∑
i,j a

2
i,j ≤ n + n(n − 1)ε2. Hence

n+ n(n− 1)ε2 ≥ n2/d, implying the desired result. 2

Lemma 2.3 Let B = (bi,j) be an n by n matrix of rank d, and let P (x) be an arbitrary polynomial
of degree k. Then the rank of the n by n matrix (P (bi,j)) is at most

(k+d
k

)
. Moreover, if P (x) = xk

then the rank of (P (bi,j)) is at most
(k+d−1

k

)
.

Proof: Let v1 = (v1,j)nj=1,v2 = (v2,j)nj=1, . . . ,vd = (vd,j)nj=1 be a basis of the row-space of B. Then
the vectors (vk11,j · v

k2
2,j · · · v

kd
d,j)

n
j=1, where k1, k2, . . . , kd range over all non-negative integers whose sum
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is at most k, span the rows of the matrix (P (bi,j)). In case P (x) = xk it suffices to take all these
vectors corresponding to k1, k2, . . . , kd whose sum is precisely k. 2

Remark: It is worth noting that there is no analog to the last lemma if the entries of the matrix
are raised to a fractional power. In fact, for every n > 1 there is an n by n real matrix B = (bi,j) of
rank 2, so that the matrix (b1/2i,j ) has full rank. Indeed, let 3 = p1 < p2 < . . . < pn be the first n odd
primes, and consider the matrix B = (bi,j) given by bi,j = i+pj−j. Clearly B has rank 2. We prove,
by induction on n, that the matrix (b1/2i,j ) has rank n. This is trivially true for n = 1. Assuming

it holds for n − 1, suppose that the n by n matrix (b1/2i,j ) does not have full rank. Expanding its
determinant according to the last row, we get that

√
pn times the determinant of the (n − 1) by

(n− 1) matrix (b1/2i,j ), 1 ≤ i, j ≤ n− 1, which is nonzero by the induction hypothesis, lies in the field
Q[
√

3,
√

5, . . . ,√pn−1]. This implies that
√
pn lies in that field, and it is well known that this is false,

supplying the desired result.

Proof of Theorem 2.1: We may and will assume that B is symmetric, since otherwise we simply
apply the result to (B + Bt)/2 whose rank is at most twice the rank of B. If ε ≤ 1/nδ for some
fixed δ > 0, the result follows by applying Lemma 2.2 to a b 1

ε2
c by b 1

ε2
c submatrix of B. Thus we

may assume that ε ≥ 1/nδ for some fixed, small δ > 0. Put k = b logn
2 log(1/ε)c, n

′ = b 1
ε2k c and note

that n′ ≤ n and that εk ≤ 1√
n′

. By Lemma 2.3 the rank of the n′ by n′ matrix (bki,j)i,j≤n′ is at

most
(d+k
k

)
≤ ( e(k+d)

k )k. On the other hand, by Lemma 2.2, the rank of this matrix is at least n′/2.
Therefore

(
e(k + d)

k
)k ≥ n′

2
=

1
2
b 1
ε2k
c,

and the desired result follows by some simple manipulation, that can be found, for example, in [4].
2

Proof of Theorem 1.1: Let C = (ci,j) be the n by n diagonal matrix defined by ci,i = 1/bi,i for
all i. Then every diagonal entry of CB is 1 and every off-diagonal entry is of absolute value at most
2ε. The result thus follows from Theorem 2.1. 2

3 Distortion in low dimension embeddings

A well known lemma of Johnson and Lindenstrauss, proved in [10] (see also [15]), asserts that for
any ε > 0, any set A of n points in an Euclidean space can be embedded in an Euclidean space of
dimension k = c(ε) log n with distortion at most ε. That is, there is a mapping f : A 7→ Rk such that
for any a, b ∈ A, the distance between f(a) and f(b) is at least the distance between a and b, and at
most that distance multiplied by 1 + ε. The proof gives that c(ε) ≤ O( 1

ε2
). Theorem 2.1 can be used

to show that this is nearly tight: c(ε) must be at least Ω( 1
ε2 log(1/ε)

), even for embedding the set of
points of a simplex. This is stated in the following proposition, proved in [1].
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Proposition 3.1 Let P0, P1, . . . , Pn be a set of n + 1 points in Rk, and suppose that the distance
between any two of them is at least 1 and at most 1+ε, where 1√

n
≤ ε ≤ 1

10 . Then k ≥ c′

ε2 log(1/ε)
log n,

where c′ is an absolute positive constant.

Proof: Put one of the points, say P0, at the origin, and shift all other points by at most ε making
sure that their distance from P0 is exactly 1. By the triangle inequality the distance between any
pair of the shifted points is still 1 + O(ε). Therefore, if vi is the k-dimensional vector representing
the i-th point, then the gram matrix C = (vti · vj) is an n by n matrix in which all diagonal entries
are 1, and all other entries are 1/2+O(ε). Moreover, the rank of this matrix is at most k. Therefore,
the rank of B = 2C − J , where J is the all 1 n by n matrix, is at most k + 1. By Theorem 2.1 this
rank is at least Ω( 1

ε2 log(1/ε)
log n), supplying the required lower bound for the dimension k. 2

4 Coding Theory

A binary code of length k is a set C ⊂ {0, 1}k of binary vectors with k coordinates. The code is
called ε-balanced if the Hamming distance between any two code-words is at least 1−ε

2 k and at most
1+ε

2 k. For each vector v = (v1, v2, . . . , vk) ∈ C, let x(v) denote the vector

x(v) = ( (−1)v1 , (−1)v2 , . . . , (−1)vk ) ∈ {−1, 1}k.

Note that for any two u, v ∈ C, the inner product between x(u) and x(v) is precisely k − 2h(u, v),
where h(u, v) is the Hamming distance between u and v.

It follows that for ε = 0, every two vectors x(u), x(v) corresponding to distinct code-words of an
ε-balanced code are orthogonal, and hence the number of code-words is at most k. Any Hadamard
matrix of order k (if one exists) shows that this is tight, hence this is tight for all powers of 2 as well
as for many other values of k divisible by 4 (see, e,g., [9] for more information about the existence
of Hadamard matrices.)

For positive values of ε the problem of determining or estimating the largest possible cardinality
of an ε-balanced code of length k is more complicated. Note, first, that ε should be at least 1/k, since
otherwise any ε-balanced code of length k is, in fact, 0-balanced. A simple probabilistic argument
(or an obvious variant of the Gilbert Varshamov bound) shows that there are ε-balanced codes of
length k with at least 2Ω(ε2k) codewords. Theorem 2.1 provides a quick upper bound, as follows.

Proposition 4.1 There exists an absolute positive constant a so that for all 1√
k
≤ ε < 1/2 the

cardinality of any ε-balanced code of length k is at most 2aε
2 log(1/ε)k.

Proof: Let C ⊂ {0, 1}k be an ε-balanced code of length k and maximum cardinality. Put n = |C|
and note that we may assume that n ≥ k. Let X be the n by k matrix whose rows are the |C| vectors
x(v)√
k

, v ∈ C. Let B be the n by n matrix defined by B = (bu,v) = XXt. Then each diagonal entry bu,u
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of B is 1, whereas each other entry of it bu,v for u 6= v, u, v ∈ C, satisfies |bu,v| = | 1k (k−2h(u, v))| ≤ ε.
Therefore, by Theorem 2.1,

k ≥ rank(X) ≥ rank(B) ≥ c

ε2 log(1/ε)
log n,

supplying the desired result. 2

Note that the assertion of the last proposition, at least for fixed ε and large n, can be also deduced, in
a completely different manner, from the Linear Programming technique of Delsarte and the McEliece-
Rodemich-Rumsey-Welch bound (see, e.g., [14], page 559). It is also worth noting that, as is well
known, the Plotkin bound (see, e.g., [14], pp. 41-43) implies that any ε-balanced code of length k

has at most O(2εk/2k) codewords, and this bounds holds even if we do not assume any upper bound
on the Hamming weights of the codewords, only a 1−ε

2 k lower bound. The interesting part in the
last Proposition is, however, the quadratic dependence on ε in the exponent.

When ε is smaller than 1√
k

we can repeat the above proof but apply Lemma 2.2 instead of
Theorem 2.1, as stated in the next Proposition.

Proposition 4.2 Suppose ε = 1
w
√
k

, where w > 1. Then the cardinality of any ε-balanced code C of

length k is smaller than k w2

w2−1
.

Proof: Put n = |C|. Applying Lemma 2.2 to the matrix B defined from the code C as in the
previous proof, we conclude that

k ≥ rank(B) ≥ n

1 + (n− 1)/(w2k)
,

implying the desired bound. 2

Thus, in particular, if w ≥
√

2 then n < 2k, and if w tends to infinity with k, then n ≤ (1+o(1))k.

5 Cross intersecting pairs

Extremal Finite Set Theory deals with various instances of the problem of determining or estimating
the maximum or minimum possible cardinality of a collection of subsets of a k-element set that
satisfies some given conditions. Rank arguments are often useful in obtaining results in this area,
see, e.g., [12] for several examples. It is therefore not surprising that one can apply Theorems 1.1
and 2.1 (or Lemma 2.2) in the investigation of problems of this type. Here we only describe one
representative example.

Proposition 5.1 Let c, α be positive constants satisfying cα > 1. Let (Xi, Yi)1≤i≤n be a collection
of n pairs of subsets of a k-element set. Suppose that Xi ∩ Yi = ∅ for all i ∈ [n] = {1, 2, . . . , n} and
that for all distinct i, j ∈ [n],

| |Xi ∩ Yj | − c(k + 1) | <
√
k + 1
α

.
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Then the number of pairs, n, satisfies n < c2α2

c2α2−1
(k + 1).

Proof: Let X be the n by k matrix whose rows are the incidence vectors of the sets Xi, and let
Y be the k by n matrix whose columns are the incidence vectors of the sets Yj . Then the product
Z = XY is an n by n matrix in which each diagonal entry is zero, and each other entry deviates
from c(k + 1) by at most

√
k+1
α . Let J be the n by n matrix in which all entries are 1, and define

B = 1
c(k+1)(c(k+ 1)J −Z). Then, each diagonal entry of B is 1, and the absolute value of each other

entry in it is at most
√
k+1
α

1
c(k+1) = 1

cα
√
k+1

. Note that the rank of B is at most k+ 1, as the rank of
Z does not exceed k. On the other hand, by Lemma 2.2, the rank of B is larger than

n

1 + n/(c2α2(k + 1))
.

It follows that
k + 1 >

n

1 + n/(c2α2(k + 1))
,

implying that n < c2α2

c2α2−1
(k + 1), as needed. 2

By the above proposition, whenever cα is bounded away from 1, the maximum possible number of
pairs is linear in k. The existence of Hadamard matrices shows that for an appropriate c this number
is at least (1− o(1))k even if α is arbitrarily large, implying that the above estimate is nearly tight.

6 Pseudo-randomness

In a series of papers, Mauduit and Sárközy studied finite pseudo-random binary sequences EN =
(e1, . . . , eN ) ∈ {−1, 1}N . In particular, they investigated in [13] a certain measure of pseudo-
randomness, defined as follows.

Given k,M ≤ N and D = {d1, . . . , dk}, where the di are integers with 1 ≤ d1 < . . . < dk ≤
N −M + 1, define

V (EN ,M,D) =
∑

0≤n<M

∏
1≤i≤k

en+di
=

∑
0≤n<M

∏
d∈D

en+d.

The correlation measure of order k of EN is defined as

Ck(EN ) = max{|V (EN ,M,D)| M and D such that M − 1 + dk ≤ N}.

Improving an estimate of [7], the following is proved in [4] (among other related results).

Theorem 6.1 ([4], Theorem 1.2) There is an absolute constant c > 0 for which the following
holds. For any positive integers ` and N with ` ≤ N/3, we have

max{C2(EN ), C4(EN ), . . . , C2`(EN )} ≥ c
√
`N

for all EN ∈ {−1, 1}N .
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The proof is a simple consequence of Theorem 2.1. Here is a sketch. Fix a sequence EN =
(e1, e2, . . . , eN ) for which the above maximum is as small as possible, and denote it by T . For
every subset A of at most ` distinct members of {1, 2, . . . , 2N/3}, consider the {−1, 1}-vector x(A) of
length N/3 whose i-th coordinate, for 1 ≤ i ≤ N/3 is the product

∏
a∈A ei+a. The set of all vectors

x(A) is a set of
∑`
j=0

(2N/3
j

)
vectors. The inner product of any two distinct vectors in this set is, in

absolute value, at most T . Therefore, the gram matrix of the vectors, divided by N/3, has 1 in each
diagonal entry, and an element of absolute value at most 3T/N in each other entry. It follows, by
Theorem 2.1, that its rank is at least

Ω(
N2

T 2 log(N/T )
log[

∑̀
j=0

(
2N/3
j

)
]).

however, this rank is at most 2N/3, implying that 2N/3 is at least as large as the last expression.
This implies the assertion of the theorem by some simple calculation which is omitted. For more
details see [4], where it is also shown that this estimate is sharp up to a logarithmic factor.

7 Derandomization

7.1 Nearly independent random variables

Let X = {X1, X2, . . . , Xn} be a set of random variables over a sample space S of size m, and suppose
each variable takes values in {−1, 1}. For every subset Y ⊂ [n], let XY denote the random variable
XY = Πi∈YXi. The family X is called ε-biased if for every nonempty Y ,

|Prob[XY = 1]− Prob[XY = −1]| ≤ ε.

Note that it is more common to consider random variables attaining values in {0, 1}, and look at
their linear combinations over Z2, but the above definition is equivalent.

It is known (see [3]) that if S is a uniform sample space of size m supporting an ε-biased set X
as above, where ε ≥ 2−n/2, then m ≥ Ω( n

ε2 log(1/ε)
). Here we show that the same lower bound applies

even without the assumption that S is uniform.

Theorem 7.1 Let X = {X1, X2, . . . , Xn} be an ε-biased set of n random variables over a sample
space S = {s1, s2, . . . , sm} of size m. If ε ≥ 2−n/2 then m ≥ Ω( n

ε2 log(1/ε)
). If ε < 2−n/2 then

m ≥ Ω(2n).

Proof: Suppose S = {s1, s2, . . . , sm}, where Prob(si) = pi. Define a 2n by m matrix U = (UY,sj )
whose rows are indexed by the family of all subsets Y of [n], and whose columns are indexed by the
points of S as follows: UY,sj = XY (sj)

√
pj .

Put A = UUT and note that for every two subsets Y1, Y2 of [n],

AY1,Y2 = Prob[XY1⊕Y2 = 1]− Prob[XY1⊕Y2 = −1].
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Therefore, all diagonal entries of A are 1, whereas all off-diagonal entries are, in absolute value, at
most ε. By Theorem 2.1, if ε ≥ 2−n/2 then

m ≥ rank(A) ≥ Ω(
log(2n)

ε2 log(1/ε)
),

completing the proof for ε ≥ 2−n/2. The result for ε < 2−n/2 follows from the case ε = 2−n/2. 2

Remark: A similar proof implies that the size m of any (not necessarily uniform) sample space that
supports a family of n random variables in which every set of k is ε-biased, where ε ≥ [

( n
bk/2c

)
]−1/2,

satisfies
m ≥ Ω(

k log(n/k)
ε2 log(1/ε)

).

As is the case with Theorem 7.1, this is tight, up to the log(1/ε) term. The proof (for the uniform
case) appears in [2].

7.2 Nearly min-wise independent permutations

A family F of permutations of [n] = {1, 2, . . . , n} is an ε-approximate k-restricted min-wise inde-
pendent family (or an (ε, k)-min-wise independent family, for short) if for every nonempty subset X
of at most k elements of [n], and for any x ∈ X, the probability that in a random element π of F ,
π(x) is the minimum element of π(X), deviates from 1/|X| by at most ε/|X|. This notion can be
defined for the uniform case, when the elements of F are picked according to a uniform distribution,
or for the more general, biased case, in which the elements of F are chosen according to a given
distribution D.

The notion of (ε, k)-min-wise independent families was introduced by Broder et al. [6], motivated
by applications in data mining. It is shown in [6] that there are such families of size at most
O
(
k2

ε2
log

(
n
k

))
and that each such family must be of size at least Ω

(
k2(1−

√
8ε)
)

in the uniform

case, and at least Ω
(
min

{
k2k/2 log

(
n
k

)
, log (1/ε)(logn−log log(1/ε))

ε1/3

})
in the biased case.

The lower estimates are improved in [5], where the following two results are proved. Note that
both supply lower bounds for the biased case, that improve even the known bounds for the uniform
case.

Theorem 7.2 For any 1/3 > ε > 0 and k ≥ 3, and all sufficiently large n, the following holds. Let
F ⊂ Sn be an (ε, k)-min-wise independent family of permutations of [n], with respect to a distribution
D on F . Then

|F| ≥ Ω
(

k

ε2 log(1/ε)
log n

)
.

Theorem 7.3 For any 1/3 > ε > 0 and k ≥ 3, and all sufficiently large n, the following holds. Let
F ⊂ Sn be an (ε, k)-min-wise independent family of permutations of [n], with respect to a distribution
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D on F . Then

|F| ≥ Ω

(
k2

ε log(1/ε)
log n

)
.

The proofs are based on Theorem 1.1, together with some additional linear-algebra arguments. Here
is the proof of the first result.
Proof of Theorem 7.2: Let F be an (ε, k)-min-wise independent family of permutations of [n],
with respect to the distribution D, where ε > 0, k ≥ 3 and n is large. Put s = k/3, L = n/s and
partition [n] into L pairwise disjoint sets X0, X1, . . . , XL−1, each of size s, where X0 = {1, 2, . . . , s}.
Put F = {π1, π2, . . . , πd}, m = L− 1, and define, for each h ∈ [s], an m by d matrix U (h) = (u(h)

ij ) as
follows:

u
(h)
ij =


√

ProbD(πj) if min(πj(X0 ∪Xi)) = πj(h)

0 otherwise.
(1)

Define V (h) = (v(h)
ij ) = U (h)(U (h))T and observe that v(h)

ii is precisely the probability that h is

the minimum element of X0 ∪Xi (according to the distribution D on F), whereas for i 6= j, v(h)
ij is

the probability that h is the minimum element of X0 ∪Xi ∪Xj according to the same distribution.
By the assumption on F and D, each v

(h)
ii deviates from 1

2s by at most ε
2s , and each v

(h)
ij for i 6= j

deviates from 1
3s by at most ε

3s . In addition, by the definition of the matrices U (h), for any distinct
h, g ∈ [s], U (h)(U (g))T = 0.

Let U be the ms by d matrix defined by UT = [(U (1))T , (U (2))T , . . . , (U (s))T ]. Then V = UUT

is a block-diagonal matrix whose blocks are the matrices V (h), implying that its rank is the sum of
ranks of the matrices V (h).

The crucial claim now is that the rank of each matrix V (h) is at least Ω( 1
ε2 log(1/ε)

logm). Indeed,
if we subtract from V (h) the rank-one matrix in which every entry is exactly 1

3s , and multiply the
result by 6s, we get a matrix in which each diagonal entry is at least 1

2 , and each off-diagonal entry
is in absolute value at most 2ε. As the above subtraction and multiplication can change the rank by
at most 1, the assertion of the claim follows from Theorem 1.1. Combining this with the fact that
for all large n (n > k2 will suffice here), logm > 0.5 log n, and the fact that |F| = d ≥ rank(V ), the
assertion of the theorem follows. 2

The proof of Theorem 7.3 is similar, with an extra combinatorial argument. The idea is to replace
the family of sets {X1, X2, . . . , XL−1} in the proof above by a larger family of s-subsets of [n]−X0,
so that the intersection of every two of them is at most εs. The full details appear in [5].

7.3 Min-wise independence for sets of size exactly k

Call a family of permutations F of [n], with a distribution D, exactly k min-wise independent if for
every subset X of exactly k elements of [n] and every x ∈ X, when a random permutation π is chosen
according to the distribution D, then ProbD(minπ(X) = π(x)) = 1

|X| .
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In case the above holds for every subset X of at most k elements of [n], F is called at most k min-
wise independent. Note that this last notion coincides with the notion of (ε, k)-min-wise independent
family considered in subsection 7.2, for the special case ε = 0. There are several papers dealing with
the minimum possible cardinality of a family of at most k min-wise independent permutations. In
[11] it is shown, slightly improving estimates of [18] and [16], that any such family must be of size
at least

∑(k−1)/2
i=0

(n−1
i

)
for odd k, and of size at least

∑k/2−1
i=0

(n−1
i

)
+
( n−2
k/2−1

)
for even k. On the

other hand, it is known (see [16], slightly improving [6]), that there are such families of size at most
1 +

∑k
j=2(j − 1)

(n
j

)
.

Much less is known about the minimum possible size of exactly k min-wise independent families
of permutations of [n]. The best known upper bound is 1 + (k−1)

(n
k

)
proved in [16], which is similar

to the bound for at most k min-wise independent families, whereas the best known lower bound is
only dlog2 log2(n − k + 2)e + k − 2. Indeed, one of the two open problems mentioned in [16] is the
problem of improving this lower bound. This is done in the following theorem.

Theorem 7.4 For any n and k ≥ 3, and for any exactly k min-wise independent family of permu-
tations of [n] F with respect to a distribution D,

|F| ≥ (k − 2)(n− 2k + 3)
k − 1

.

While this bound is still significantly smaller than the upper bound, it is far better than the
double logarithmic known bound, and for every fixed k, it grows linearly with n. The proof, given
below, does not apply Theorems 1.1 and 2.1, but we include it here as it similar to the proof of
Theorem 7.2, combining the basic approach in it with a simple probabilistic argument.

Proof of Theorem 7.4: Let F be an exactly k min-wise independent family of permutations with
respect to a distribution D, where k ≥ 3. Clearly, for every subset Y of k − 1 elements of [n] there
is at least one element y ∈ Y such that

ProbD(minπ(Y ) = π(y)) ≥ 1
k − 1

( >
1
k

).

It follows that if one chooses, randomly and uniformly, a subset Y ⊂ [n] of cardinality k − 1 , and
a member y ∈ Y , then with probability at least 1/(k − 1), the probability (with respect to D) that
minπ(Y ) = π(y) exceeds 1/k.

Let X be a random subset of cardinality k − 2 of [n], and define, for each x ∈ X a set Yx as
follows:

Yx = {y ∈ [n]−X : ProbD(minπ(X ∪ {y}) = π(x)) >
1
k
}.

By linearity of expectation, the expected value of
∑
x∈X |Yx| is at least (k−2)(n−k+2)

k−1 , and thus, there
exists an X for which the size of

∑
x∈X |Yx| is at least this fraction. Fix such a set X, suppose
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F = {π1, . . . πd} and define, for each x ∈ X, a |Yx| by d matrix U (x) = (u(x)
y,j ) where y ∈ Yx and

1 ≤ j ≤ d as follows.

u
(x)
y,j =


√

ProbD(πj) if min(πj(X ∪ y)) = πj(x)

0 otherwise.
(2)

As in the proof of Theorem 7.2, define V (x) = (v(x)
y,y′) = U (x)(U (x))T and observe that v(x)

y,y is
precisely the probability that x is the minimum element of X ∪ {y} (according to the distribution
D on F), whereas for y 6= y′, v(x)

y,y′ is the probability that x is the minimum element of X ∪ {y, y′}
according to the same distribution. By the definition of Yx, and the assumption on F and D, each
diagonal entry of V (x) is strictly greater than 1/k, whereas each other entry is exactly 1/k. Therefore,
the rank of V (x) is at least |Yx| − 1 (as subtracting 1/k from each of its entries creates a matrix of
full rank). In addition, note that the definition of the matrices U (x) implies that for any distinct
x, x′ ∈ X, U (x)(U (x′))T = 0.

Put p =
∑
x∈X |Yx| and let U be the p by d matrix obtained by putting all matrices U (x), (x ∈ X)

together, one on top of the other. Then V = UUT is a block-diagonal matrix whose blocks are the
matrices V (x), implying that its rank is the sum of ranks of the matrices V (x).

Since the rank of each V (x) is at least |Yx| − 1 , and
∑
x∈X |Yx| ≥

(k−2)(n−k+2)
k−1 , it follows that

|F| = d ≥ rank(V ) ≥ (k − 2)(n− k + 2)
k − 1

− (k − 2) =
(k − 2)(n− 2k + 3)

k − 1
,

completing the proof. 2

Remark: Note that k is a trivial lower bound for the size of any exacly k min-wise independent
family of permutations. Indeed, fix an arbitrary set X of k elements, and observe that each x ∈ X
has to appear first among the elements of X in at least one of the permutations. Therefore, by the
last theorem, Ω(n) is a lower bound for the size of any exacly k min-wise independent family of
permutations of [n], for all n ≥ k ≥ 3. (For k = 2 and any n the two permutations 1, 2, . . . n and
n, n− 1, . . . , 1 suffice, of course).

8 Concluding remarks

The proof of Theorems 1.1 and 2.1 can be easily modified to supply a more general result, as follows.

Theorem 8.1 Let B = (bi,j) be an n by n real, symmetric matrix of rank d, and let P (z) be an
arbitrary polynomial of degree k. Then the following inequality holds(

d+ k

k

)
≥ [

∑n
i=1 P (bi,i)]2∑n
i,j=1 P

2(bi,j)
.
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Indeed, this follows by noticing that the proof of Lemma 2.2 implies the known fact that the rank of
any real, symmetric matrix is at least the ratio between the square of its trace, and the trace of its
square, and by applying this fact, together with the assertion of Lemma 2.3 to the matrix P (bi,j).
As mentioned in Section 2, here too, the symmetry assumption is not very crucial, as any matrix
can be made symmetric by averaging it with its transposed, a process that does not change the rank
by more than a factor of 2, maintains the trace, and does not increase the trace of the square.

The main open problem concerning the assertion of Theorems 1.1 and 2.1 is whether it is possible
to remove the log(1/ε) term in their statement when n is sufficiently large as a function of ε. If
possible, this would be tight up to a constant factor, as shown by many of the applications described
throughout the paper, where the gap between the upper and lower bounds is Θ(log(1/ε)). Note that
when ε = 1√

n
, the log(1/ε)-term cannot be omitted.

In most of the proofs throughout the paper, and in particular, in the proof of Theorem 2.1, we
made no attempt to optimize the absolute constants involved. In some cases these constants may be
of interest, and it is thus worthwhile to note that the estimates can be improved by replacing the
polynomial P (z) = zk used in the proof of Theorem 2.1 by an appropriate Chebyshev Polynomial.
Indeed, the proof suggests that the best choice of a polynomial P of degree k for which we consider the
matrix P (bi,j), is the polynomial of degree P for which the maximum value of |P (z)| over z ∈ [−ε, ε]
is minimum, among all polynomials P satisfying P (1) = 1. It is known (see [17]) that the optimal
polynomial P for this problem can be obtained as follows.

The Chebyshev polynomials of the first kind Tk(z) can be defined by T0(Z) = 1, T1(z) = z

and Tk+1(z) = 2zTk(z) − Tk−1(z) for all k ≥ 1. Equivalently, Tk(z) = cosh(k cosh−1(z)), where
cosh(z) = ez+e−z

2 . It is known that if [a, b] is a real interval where b > a > 0, then among all
polynomials t of degree k that satisfy t(0) = 1, the one for which the maximum of the absolute value
in [a, b] is minimal, is the polynomial

tk(z) =
Tk(a+b−2z

b−a )

Tk(a+b
b−a)

.

For this polynomial,

max
z∈[a,b]

|tk(z)| = tk(a) =
1

Tk(a+b
b−a)

.

It follows that for our purpose, the best polynomial of degree k is obtained by taking a = 1 − ε,
b = 1 + ε and Pk(z) = tk(1 − z) for tk as above. Therefore, Pk(1) = 1, and the maximum value of
|Pk(z)| in [−ε, ε] is Tk(1/ε)−1. Since cosh−1(z) = ln(z +

√
z2 − 1) and Tk(z) = cosh(k cosh−1(z)), it

is not difficult to check that for small ε, Tk(1/ε)−1 is roughly εk

2k−1 for all k ≥ 1. I follows that by
using this polynomial instead of the polynomial zk in the proof of Theorem 2.1, if ε is small and k is
large, one can roughly replace ε by ε/2 in the conclusion of the theorem, improving its estimate by
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roughly a factor of 4. This does not shed any light on the problem of deciding whether or not the
log(1/ε)-term in the statement of the theorem can be removed for sufficiently large n.
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