Due: September 27, 2011.

Question 1

In this question we consider different ways to generalize the $(7, 4, 3)$ Hamming code we saw in class.

For $l \geq 1$, consider the $l \times (2^l - 1)$ parity check matrix H_1, whose columns are the binary representations of the numbers 1 to 2^l. Let \mathcal{H}_1 be the Hamming code defined by H_1.

1. What are the rate and distance of \mathcal{H}_1? How many errors can it correct?

2. Show that \mathcal{H}_1 is a perfect code, i.e., has the largest possible number of codewords given its length and distance.

Consider the following encoding $E_2 : \{0, 1\}^{4r} \to \{0, 1\}^{7r}$: Think of $x \in \{0, 1\}^{4r}$ as consisting of r blocks of 4 bits each. E_2 encodes each of the blocks using the $(7, 4, 3)$ Hamming code. Let \mathcal{H}_2 be the code that is defined by E_2.

3. What are the rate and distance of \mathcal{H}_2? How many errors can it correct?

4. Is \mathcal{H}_2 also a perfect code? When would you rather use \mathcal{H}_1, and when would you rather use \mathcal{H}_2?

Question 2

In the following X and Y are random variables over a finite sample space Ω. Prove:

1. $H(X) \geq 0$. Equality holds iff X is constant.

2. $H(X) \leq \log |\Omega|$. Equality holds iff X is uniform over Ω.

3. $H(X|Y) \geq 0$. Equality holds iff Y determines X.

4. $H(X|Y) \leq H(X)$. Equality holds iff X and Y are independent.

5. $H(X) - H(X|Y) = H(Y) - H(Y|X)$.

Let the volume of a Hamming Ball of radius γn in $\{0, 1\}^n$ be $B := \sum_{i=0}^{\gamma n} \binom{n}{i}$.

6. $B \leq 2^{H(\gamma)n}$. Hint: use the binomial expansion of $(\gamma + (1-\gamma))^n$.

7. $\lim_{n \to \infty} \frac{\log B}{n} = H(\gamma)$. Hint: use Stirling’s formula.