Exercise #3

Goal For some $\varepsilon = O\left(\frac{d}{\sqrt{n}}\right)$
\[
agr_{\leq 2d}(f) \geq \left(\mathbb{E}_{s \in S_k^{k+1}} \left(agr_{\leq d}(f_s) \right) \right) - 3 \leq \varepsilon \]
proved in class

For some $\varepsilon = \left(\frac{d}{\sqrt{n}}\right) \cdot O(1)$
\[
agr_{\leq d}(f) \geq \mathbb{E}_{s \in S_k^{k+1}} \left(agr_{\leq d}(f_s) \right) - 3 \leq \varepsilon
\]

4 Lemmas + conclude

1. LDT Thm

success of test \Rightarrow some agreement with low deg

You should prove that there exist few low degree poly that explain almost all the success of the test.
different notion of "explaining": \(\Pi(s) \equiv P_{1s} \) (Note: correction)

agreement on the entire subspace, rather than on a point.

[Diagram of a probability space with intersections labeled as list agree on part, list agree on sub., and test passes.]

understand prob. of events & their intersections

2. Agreement increase

 II. almost everything is explained by short list

 III. Is it possible that within \(S \) agreement with \(\Pi \) is small, yet average over \(S \) the agreement with \(\Pi \) is large?

 I. If only the weak LDT Thm is correct, then on average over \(S \), agreement with \(\Pi \) is small.
Degree decrease

$q \in F_{\leq \deg \{x_1, \ldots, x_m\}}$

restrict q to random $sc S_{k+1}^k$

What is the degree of $q|_S$? Can it be $< \deg q$ with non-negligible probability?