Probabilistically Checkable Proofs

Def A **verifier** is a poly-time deterministic algorithm, that receives an input x and a proof π and accepts/rejects.

The language defined by the verifier \(V \) is \(\{ x \in \Sigma^* \mid \exists \pi \ V(x, \pi) = \text{accept} \} \).

Completeness \(x \in L \rightarrow \exists \pi \ V(x, \pi) = \text{acc} \)

Soundness \(x \in L \rightarrow \forall \pi \ V(x, \pi) = \text{rej} \)

NP - The class of all languages \(L(v) \) for some \(V \).

Remark asymmetry between complexity of proof and complexity of verification.

Q What happens if we add randomness to the verifier?

Def An \((r, \xi_x)\) restricted verifier

(If \(\Sigma = \{0, 1\} \) we sometimes omit \(\Sigma \)) is a poly-time algo.

1. Reads \(x \) and \(r \).
2. Queries \(q \) locations in \(\Pi \).
3. \text{acc/rej}

The lang. defined by the verifier \(V \) is \(L(r, \xi) \).

Completeness \(x \in L \rightarrow \exists \pi \ P(V(x, \pi) = \text{acc}) = 1 \) \((c) \)

Soundness \(x \in L \rightarrow \forall \pi \ P(V(x, \pi) = \text{acc}) < \frac{1}{2} \) \((s) \)

\(\text{PCP}^{c, \xi}[r, q]_\xi = \text{class of all lang. with } (r, q, \xi)_\xi \text{-restricted verifier w/ comp. } c \text{ and soundness } \xi. \)

\(\bigcup_c \text{PCP}[0, n^c] = \text{NP} = \bigcup_c \text{PCP}[0(\log n), n^c] \)

\(\text{PCP}[0, 0] = \text{P} = \text{PCP}[0(\log n), 0] \)

[1]
Easy $PCP[O\log n, O(1)] \subseteq NP$

Then $PCP[O\log n, O(1)] = NP$

We'll start by showing $PCP[\text{polylog}, \text{polylog}] \not\subseteq NP$.

Hardness of Approximation

An optimization problem maps a set of solutions for each input. Each solution has a value.

Goal: Find a solution with optimal value.

- **Max-Clique**: instance = graph G, sol's: cliques, value: size
- **Min-Set-Cover**: instance = U, S_1, \ldots, S_n, sol's: covers, value: size
- **Max-CSP (constraint satisfaction problem)**

Def: Let $V = \{v_1, \ldots, v_n\}$ be variables over alphabet Σ, $q \in N$.

A q-ary constraint is $(\varphi, i_1, \ldots, i_q)$ s.t. $i_1, \ldots, i_q \in [n]$, $\varphi: \Sigma^q \to \{0, 1\}$.

It is satisfied by $a: V \to \Sigma$ iff $\varphi(a(v_{i_1}), \ldots, a(v_{i_q})) = 1$.

Denote $\text{Sat}_{\varphi}(\text{const.})$ - fraction of const. sat. by a.

Max-CSP[\Sigma]$$q$$: instance = vars $V = \{v_1, \ldots, v_n\}$, q-ary constraints $\varphi_1, \ldots, \varphi_m$ over Σ.

sol's: assign $a: V \to \Sigma$, value: $\text{Sat}_{\varphi}(C)$

Generalizes Max-3SAT, Max-Cut, Max-3COL.

Def: An algorithm A approximates problem \mathcal{O} if given input x,
it outputs a solution whose value $A(x)$ satisfies

\[
2^{-\epsilon} \leq A(x) \leq \mathcal{OPT}(x) \quad \text{for maximization}
\]

\[
2^\epsilon \leq \mathcal{OPT}(x) \leq A(x) \leq 2 \cdot \mathcal{OPT}(x) \quad \text{for minimization}
\]

Rem: ϵ may be a function of $|x|$.
Known eff. approx

- Max-Clique \(\frac{n}{\log^2 n} \)
- Min-Set-Cover \(\ln n \)
- Knapsack \(n^3 \cdot V^{\frac{3}{2}} \)
- Max-3SAT \(\frac{1}{8} \)

\[\text{Def} \quad \text{gap-CSP}(q) \]

is the following problem:

Given an instance \((V, C) \) of Max-CSP, decide between:

YES: \(\text{OPT}(V, C) \geq c \)

NO: \(\text{OPT}(V, C) < s \)

An algo. is said to solve a gap problem if says **YES** on **YES** inst, **NO** on **NO** inst.

Claim: If there is a reduction from NPC language to gap-CSP, mapping \(x \) to \((V_x, C_x) \) s.t.

\[x \in L \rightarrow \text{OPT}(V_x, C_x) \geq c \]
\[x \notin L \rightarrow \text{OPT}(V_x, C_x) < s \]

Then it is NP-hard to approximate Max-CSP to within \(c \)

Proof: Assume that \(A \) is a \(\frac{c}{s} \)-approx. algo. for Max-CSP.

Eff. algo for \(L \): Given \(x \), run reduction to get \((V_x, C_x) \).
Run \(A \) on \((V_x, C_x) \), denote value by \(v \).

If \(v < s \), output **NO** (because if \(x \in L \), \(\text{OPT}(V_x, C_x) \geq c \) so \(v \geq \frac{c}{s} \cdot c = s \))

If \(v > s \), output **YES** (because if \(x \notin L \), \(\text{OPT}(V_x, C_x) < s \), so \(v < s \))
The following two statements are equivalent: \((\exists c > s > 0 \text{ are constants}) \)

(i) \(\text{NP} \subseteq \text{PCP}_{c,s} [O(\log n), O(1)]_x \)

(ii) There exists a constant \(q \), s.t. \(\text{gap-CSP}_{c,s}(q)_x \) is \(\text{NP} \)-hard.

Proof (i) \(\Rightarrow \) (ii). Let \(\text{LENPC} \). We will show a reduction \(x \rightarrow (V_x, C_x) \)

- \(x \in L \rightarrow \text{OPT}(V_x, C_x) \geq c \)
- \(x \notin L \rightarrow \text{OPT}(V_x, C_x) < s \)

Let Ver be an \((c, q)-verifier\) for \(L \) \((q = O(1), r = O(\log n))\) given by (i).

Define \(V_x \) to be the \(\leq 2^q \) Ver's corr. to the proof locations accessible log Ver.

Define \(C_x \) as follows: for each \(p_i \in \text{PCP}_{c,s}[O(\log n), q]_x \) and on a predicate \(\psi(p_i) \in \{0, 1\} \),

Denote \(C = (\psi(p_i), i_1, \ldots, i_q) \) the corr. const.

\(C_x = \{ C \in \text{PCP}_{c,s}[O(\log n), q]_x \} \). This reduction clearly works.

(ii) \(\Rightarrow \) (i). Assume we have a reduction from \(\text{LENPC} \) to \(\text{gap-CSP}_{c,s}(q)_x \)

\(\text{s.t. } x \rightarrow \text{OPT}(V_x, C_x) \geq c \)

\(x \rightarrow \text{OPT}(V_x, C_x) < s \)

We need to prove \(\text{NP} \subseteq \text{PCP}_{c,s}[O(\log n), q]_x \).

Enough to show \(\text{LE} \subseteq \text{PCP}_{c,s}[O(\log n), q]_x \).

Let Ver work as follows: On input \(x \), run the reduction, getting \((V_x, C_x) \).

Interpret the proof as assign. \(a: V_x \rightarrow \Sigma \). Read \(|C_i| \) random bits to select a random constraint \(\psi(C_x) \in \{0, 1\} \).

Read proof locations \(T_{i_1}, \ldots, T_{i_q} \), and check if they said \(x \).