Summary of Algebraic Proof

Result: $\text{NPC} \subseteq \text{PCP}[O(\log n), O(1)] \subseteq \text{polylog} n$

Toolbox: "The low deg poly toolbox"

1. Low degree extension - work with low degree poly instead of arbitrary strings.
 - Low degree poly = good code ("Reed-Muller code")
 - (i) good rate (\Rightarrow encoding doesn't increase the length too much)
 - (ii) good distance (\Rightarrow two codewords differ almost everywhere)
 - (iii) self-correction
 - (iv) local testing

Disadvantages:
 - (i) large alphabet \mathbb{F} which is large if $|\mathbb{F}| = \text{polylog} n$
 - Note the alphabet of PCP construction is $\subseteq \text{polylog} n$ (which is not $O(1)$, but not that bad either).
 - The reason is (ii):
 - (ii) large locality & test locality are $|\mathbb{F}|$ (or poly$|\mathbb{F}|$) points (corr. to line or plane inside \mathbb{F}^m).
 - (iii) non-optimal rate: length of encoding is polynomial rather than linear in length of message.

Choosing $|\mathbb{F}|$ and m differently can make almost linear...
Proof Outline: Want to decide whether \(\Phi \) is sat.

1. **Sum-Check**

 \[
 \begin{align*}
 \text{Comp} & \quad \Phi \text{ is sat } \Rightarrow \exists \text{ proof that consists of poly}
 \text{ that we always accept.} \\
 \text{Sound} & \quad \Phi \text{ is not sat } \Rightarrow \forall \text{ proof that consists of poly}
 \text{ we accept with probability } \leq \frac{1}{2}.
 \end{align*}
 \]

2. **New proof consists of:**
 - I. Proof from sum-check.
 - II. Proof needed for self-correction (restrictions to lines)
 - III. Proof needed for low deg testing (restrictions to planes)

3. **New verification**

 Simulate sum-check verifier. Replace each query to poly by:
 - I. Low degree test.
 - II. Self correction to answer query.
The argument Completeness is easy. Assume e is not sat.

Three BAD things can happen:

I For some poly, the prover in fact gives a table of a func. that is far from poly.
 \rightarrow Will catch with const. prob.

II For some poly, the prover gives a table of a func. that is close to poly, but on some query it gives a value which is not consistent with the close poly.
 \rightarrow Will catch with const. prob.

III For all poly, the prover gives to all queries values that are consist. with the close low deg poly
 \rightarrow The Sum-Check verifier on the proof that contains for every poly, the low deg poly that is close to the given func.
 Should reject with const. prob.
Next Decrease alphabet from $o(1)$ to $O(1)$. - Via composition.