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Abstract

In this paper, we present a polynomial-time algorithm that approximates sufficiently high-value
Max 2-CSPs on sufficiently dense graphs to within Nε approximation ratio for any constant
ε > 0. Using this algorithm, we also achieve similar results for free games, projection games on
sufficiently dense random graphs, and the Densest k-Subgraph problem with sufficiently dense
optimal solution. Note, however, that algorithms with similar guarantees to the last algorithm
were in fact discovered prior to our work by Feige et al. and Suzuki and Tokuyama.

In addition, our idea for the above algorithms yields another by-product: a quasi-polynomial
time approximation scheme (QPTAS) for satisfiable dense Max 2-CSPs with better running
time than the known algorithms.

Keywords and phrases Max 2-CSP, Dense Graphs, Densest k-Subgraph, QPTAS, Free
Games, Projection Games

1 Introduction

Maximum constraint satisfaction problem (Max CSP) is a problem of great interest in
approximation algorithms since it encapsulates many natural optimization problems; for
instance, Max k-SAT, Max-Cut, Max-DiCut, Max k-Lin, projection games, and unique
games are all families of Max CSPs. In Max CSP, the input is a set of variables, an
alphabet set, and a collection of constraints. Each constraint’s domain consists of all the
possible assignments to a subset of variables. The goal is to find an assignment to all the
variables that satisfies as many constraints as possible.

In this paper, our main focus is on the case where each constraint depends on exactly k = 2
variables and the alphabet size is large. This case is intensively researched in hardness of
approximation and multi-prover games. For Max 2-CSP with large alphabet size, the best
known polynomial-time approximation algorithm, due to Charikar et al. [10], achieves an ap-
proximation ratio of O((nq)1/3) where n is the number of variables and q is the alphabet size.
On the other hand, it is known that, there is no polynomial-time 2log1−δ(nq)-approximation
algorithm for Max 2-CSP unless NP 6⊆ DTIME(npolylog(n)) [16]. Moreover, it is believed
that, for some constant c > 0, no polynomial-time O((nq)c)-approximation algorithm exists
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for projection games, a family of Max 2-CSP we shall introduce later, unless P = NP [15].
This is also known as the Projection Games Conjecture (PGC). As a result, if the PGC
holds, one must study special cases in order to go beyond polynomial approximation ratio
for Max 2-CSP.

One such special case that has been particularly fruitful is dense Max 2-CSP where density
is measured according to number of constraints, i.e., an instance is δ-dense if there are
δn2 constraints. Note that, for convenience, we always assume that there is at most one
constraint on a pair of variables. In other words, we form a simple graph by letting vertices
represent the variables and edges represent the constraints. This is the interpretation that
we will use throughout the paper. According to this view, δn is the average degree of the
graph.

In 1995, Arora, Karger and Karpinski [3] invented a polynomial-time approximation scheme
(PTAS) for dense Max 2-CSP when the density δ and alphabet size q are constants. More
specifically, for any constant ε > 0, the algorithm achieves an approximation ratio 1 + ε

and runs in time O(n1/ε2). Unfortunately, the running time becomes quasi-polynomial time
when q is not constant.

Another line of development of such PTASs centers around subsampling technique (e.g. [1,
2, 4]). In summary, these algorithms function by randomly sampling the variables according
to some distribution and performing an exhaustive search on the induced instance. Since
the sampled set of variables is not too large, the running time is not exponential. However,
none of these algorithm achieves polynomial running time for large alphabets. In particular,
all of them are stuck at quasi-polynomial running time.

Since none of these algorithms runs in polynomial time for large alphabet, a natural and
intriguing question is how good a polynomial-time approximation algorithm can be for dense
Max 2-CSPs. In this paper, we partially answer this question by providing a polynomial-
time approximation algorithm for dense high-value Max 2-CSPs that achieves (nq)ε ap-
proximation ratio for any constant ε > 0. Moreover, our technique also helps us come
up with a quasi-polynomial time approximation scheme for satisfiable Max 2-CSPs with
running time asymptotically better than that those from [1, 2, 3, 4].

The central idea of our technique is a trade-off between two different approaches: greedy
assignment algorithm and “choice reduction” algorithm. In summary, either a simple greedy
algorithm produces an assignment that satisfies many constraints or, by assigning an assign-
ment to just one variable, we can reduce the number of optimal assignment candidates of
other variables significantly. The latter is what we call the choice reduction algorithm. By
applying this argument repeatedly, either one of the greedy assignments gives a high value
assignment, or we are left with only few candidates for each variables. In the latter case, we
can then just pick a greedy assignment at the end.

We would like to note that the choice reduction idea is not our original idea as it has already
been successfully used in a few other algorithms. In fact, the idea has even been explored
before for Max 2-CSP by Charikar et al [10]. However, what sets our algorithm apart
is that, whereas in [10] the choice reduction was used once, we observe that the choice
reduction algorithm can be applied multiple times for dense instances.

Not only that our technique is useful for Max 2-CSP, we are able to obtain approximation
algorithms for other problems in dense settings as well. The first such problem is free games,
which can be defined simply as Max 2-CSP on balanced complete bipartite graphs. While
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free games have been studied extensively in the context of parallel repetition [5, 17] and
as basis for complexity and hardness results [1, 9], the algorithm aspect of it has not been
researched as much. In fact, apart from the aforementioned algorithms for dense Max 2-
CSP that also works for free games, we are aware of only two approximation algorithms, by
Aaronson et al. [1] and by Brandao and Harrow [8], specifically developed for free games.
Similar to the subsampling lemmas, these two algorithms are PTASs when q is constant
but, when q is large, the running times become quasi-polynomial. Interestingly, our result
for dense Max 2-CSP directly yields a polynomial-time algorithm that can approximate
free games within (nq)ε factor for any constant ε > 0, which may be the first non-trivial
approximation algorithm for free games with such running time.

Secondly, our idea is also applicable for projection games. The projection games problem
(also known as Label Cover) is Max 2-CSP on a bipartite graph where, for each assign-
ment to a left vertex of an edge, there is exactly one satisfiable assignment to the other
endpoint of the edge. Label Cover is of great significance in the field of hardness of ap-
proximation since almost all NP-hardness of approximation results known today are reduced
from the NP-hardness of approximation of projection games (e.g. [6, 12]).

The current best polynomial-time approximation algorithm for satisfiable projection games
is the authors’ with O((nq)1/4) ratio [14]. Moreover, as mentioned earlier, if the PGC is
true, then, in polynomial time, approximating Label Cover beyond some polynomial ratio
is unlikely. In this paper, we exceed this bound on random balanced bipartite graphs with
sufficiently high density by proving that, in polynomial time, one can approximate satisfiable
projection games on such graphs to within (nq)ε factor for any constant ε > 0.

Finally, we show a similar result for Densest k-Subgraph, the problem of finding a size-k
subgraph of a given graph that contains as many edges as possible. Finding best polynomial-
time approximation algorithm for Densest k-Subgraph(DkS) is a big open question in the
field of approximation algorithms. Currently, the best known algorithm for DkS achieves an
approximation ratio of O(n1/4+ε) for any constant ε > 0 [7]. On the other hand, however,
we only know that there is no PTAS for DkS unless P=NP [13].

Even though Densest k-Subgraph on general graphs remains open, the problem is better
understood in some dense settings. More specifically, Arora et al. [3] provided a PTAS for
the problem when the given graph is dense and k = Ω(N) where N is the number of vertices
of the given graph. Later, Feige et al. [11] and Suzuki and Tokuyama [18] showed that,
if we only know that the optimal solution is sufficiently dense, we can still approximate
the solution to within any polynomial ratio in polynomial time. Using our approximation
algorithm for dense Max 2-CSP, we are able to construct a polynomial-time algorithm for
Densest k-Subgraph with similar conditions and guarantees as that from the algorithms
from [11] and [18].

The theorems we prove in this paper are stated in Section 3 after appropriate preliminaries
in the next section.

2 Preliminaries and Notation

In this section, we formally define the problems we focus on and the notation we use through-
out the paper. First, to avoid confusion, let us state the definition of approximation ratio
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for the purpose of this paper.

I Definition 1. An approximation algorithm for a maximization problem is said to have
an approximation ratio α if the output of the algorithm is at least 1/α times the optimal
solution.

Note here that the approximation ratio as defined above is always at least one.

Next, before we define our problems, we review the standard notation of density of a graph.

I Definition 2. A simple undirected graph G = (V,E) is defined to be of density |E|/|V |2.

Moreover, for a graph G and a vertex u, we use ΓG(u) to denote the set of neighbors of
u in G. We also define ΓG2 (u) to denote the set of neighbors of neighbors of u in G, i.e.,
ΓG2 (u) = ΓG(ΓG(u)). When it is unambiguous, we will leave out G and simply write Γ(u)
or Γ2(u).

Now, we will define the problems starting with Max 2-CSP.

I Definition 3. An instance (q, V,E, {Ce}e∈E) of Max 2-CSP consists of

a simple undirected graph (V,E), and

for each edge e = (u, v) ∈ E, a constraint (or constraint) Ce : [q]2 → {0, 1} where [q]
denotes {1, 2, . . . , q}.

The goal is to find an assignment (solution) ϕ : V → [q] that maximizes the number of
constraints Ce’s that are satisfied, i.e. C(u,v)(ϕ(u), ϕ(v)) = 1. In other words, find an
assignment ϕ : {x1, . . . , xn} → [q] that maximizes

∑
(u,v)∈E C(u,v)(ϕ(u), ϕ(v)). The value of

an assignment is defined as the fraction of edges satisfied by it and the value of an instance
is defined as the value of the optimal assignment.

A Max 2-CSP instance (q, V,E, {Ce}e∈E) is called δ-dense if the graph (V,E) is δ-dense.
Throughout the paper, we use n to denote the number of vertices (variables) |V | and N to
denote nq, which can be viewed as the size of the problem.

Free games and projection games are specific classes of Max 2-CSP, which can be defined
as follows. Note that n,N , density and value are defined in a similar fashion for free games
and projection games as well.

I Definition 4. A free game (q, A,B, {Ca,b}(a,b)∈A×B) consists of

Two sets A,B of equal size, and

for (a, b) ∈ A×B, a constraint Ca,b : [q]2 → {0, 1}.

The goal is to find an assignment ϕ : A ∪ B → [q] that maximizes the number of edges
(a, b) ∈ A×B that are satisfied, i.e., Ca,b(ϕ(a), ϕ(b)) = 1.

I Definition 5. A projection game (q, A,B,E, {πe}e∈E) consists of

a simple bipartite graph (A,B,E), and

for each edge e = (a, b) ∈ E, a “projection” πe : [q]→ [q].
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The goal is to find an assignment to the vertices ϕ : A∪B → [q] that maximizes the number
of edges e = (a, b) that are satisfied, i.e., πe(ϕA(a)) = ϕB(b).

Both free games and projection games can be viewed as special cases of Max 2-CSP. More
specifically, free games are simply Max 2-CSPs on complete balanced bipartite graphs.

For projection games, one can view πe as a constraint Ce : [q]2 → {0, 1} where Ce(σu, σv) = 1
if and only if πe(σu) = σv. In other words, projection game is Max 2-CSP on bipartite
graph where an assignment to the endpoint in A of an edge determines the assignment to
the endpoint in B.

For convenience, we will define the notation of “optimal assignment” for Max 2-CSP intu-
itively as follows.

I Definition 6. For a Max 2-CSP instance (q, V,E, {Ce}e∈E), for each vertex u ∈ V , let
σOPTu be the assignment to u in an assignment to vertices that satisfies maximum number
of edges, i.e., ϕ(u) = σOPTu is the assignment that maximizes

∑
(u,v)∈E C(u,v)(ϕ(u), ϕ(v)).

In short, we will sometimes refer to this as “the optimal assignment”.

Note that since projection games and free games are families of Max 2-CSP, the above
definition also carries over when we discuss them.

Lastly, we define Densest k-Subgraph.

I Definition 7. In the Densest k-Subgraph problem, the input is a simple graph G =
(V,E) of N = |V | vertices. The goal is to find a subgraph of size k that contain maximum
number of edges.

3 Summary of Results

We are finally ready to describe our results and how they relate to the previous results. We
will start with the main theorem on approximating high-value dense Max 2-CSP.

I Theorem 8 (Main Theorem). For every constant γ > 0, there exists a polynomial-time
algorithm that, given a δ-dense Max 2-CSP instance of value λ, produces an assignment of
value Ω((δλ)O(1/γ)N−γ) for the instance.

Note that, when δ, λ = N−o(1), the algorithm can achieve (nq)ε approximation ratio for any
constant ε > 0.

Since every free game is 1/2-dense, Theorem 8 immediately implies the following corollary.

I Corollary 9. For every constant γ > 0, there exists a polynomial-time algorithm that, given
a free game of value λ, produces an assignment of value Ω(λO(1/γ)N−γ) for the instance.

Again, note that when λ = N−o(1), the algorithm can achieve (nq)ε approximation ratio for
any constant ε > 0.

The next result is a similar algorithm for projection games on sufficiently dense random
graphs as stated below.
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I Theorem 10. For every constant γ > 0, there exists a polynomial-time algorithm that,
given a satisfiable projection game on a random bipartite graph (A,B,E) ∼ G(n/2, n/2, p)
for any p ≥ 10

√
logn/n, produces an assignment of value Ω(N−γ) for the instance with

probability 1− o(1).

Note that G(n/2, n/2, p) is defined in Erdős-Rényi fashion, i.e., the graph contains n/2
vertices on each side and, each pair of left and right vertices is included as an edge with
probability p independently.

In addition, it is worth noting here that the required density for projection games is much
lower than that of Max 2-CSP; our Max 2-CSP algorithm requires the degree to be
Ω(n/N−o(1)) whereas the projection games algorithm requires only Ω̃(

√
n).

As stated earlier, we are unaware of any non-trivial polynomial-time algorithm for dense
Max 2-CSP, free games, or projection games on dense random graphs prior to our al-
gorithm.

Next, we state our analogous result for Densest k-Subgraph.

I Corollary 11. For every constant γ > 0, there exists a polynomial-time algorithm that,
given a graph G = (V,E) on N vertices such that its densest subgraph with k vertices is δ-
dense, produces a subgraph of k vertices that is Ω(δO(1/γ)N−γ)-dense with high probability.

Note that the density condition is on the optimal solution, not the given graph G. The
condition and the algorithm are exactly the same as that of [11] and [18]. However, the
techniques are substantially different. While [11] deals combinatorially directly with the
given graph G and [18] employs subsampling technique, we simply use our algorithm from
Theorem 8 together with a simple reduction from Densest k-Subgraph to Max 2-CSP
due to Charikar et al. [10].

Lastly, we also give a quasi-polynomial time approximation scheme for satisfiable dense Max
2-CSP as described formally below.

I Corollary 12 (QPTAS for Dense Max 2-CSP). For any 1 ≥ ε > 0, there exists an
(1 + ε)-approximation algorithm for satisfiable δ-dense Max 2-CSP that runs in time
NO(ε−1δ−1 logN).

Comparing to the known algorithms, our QPTAS runs faster than QPTASs from [2, 3, 4],
each of which takes at least NO(ε−2δ−1 logN) time. However, while our algorithm works only
for satisfiable instances, the mentioned algorithms work for unsatisfiable instances as well
but with an additive error of ε in value instead of the usual multiplicative guarantee of
(1 + ε).

4 Proof of The Main Theorem

In this section, we prove the main theorem. In order to do so, we will first show that we do
not have to worry about the density δ at all, i.e., it is enough for us to prove the following
lemma.

I Lemma 13. For every γ > 0, there exists a polynomial-time algorithm that, given a free
game (q, A,B, {C(a,b)}(a,b)∈A×B) of value λ′, produces an assignment of value λ′O(1/γ)q−γ
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for the instance.

The proof of the main theorem based on the lemma above is shown below.

Proof of Theorem 8 based on Lemma 13. The proof is based on putting in “dummy edges”
where the constraints are always false regardless of the assignment to make the game more
dense. More specifically, given a Max 2-CSP instance (q, V,E, {Ce}e∈E) of value λ and
density δ, we construct a free game (q′, A,B, {C ′(a,b)}(a,b)∈A×B) as follows:

Let A,B be copies of V and let q′ = q.

For each a ∈ A and b ∈ B, let C ′(a,b) = C(a,b) if (a, b) ∈ E. Otherwise, let C ′(a,b) := 0.

Observe that, if we assign the optimal assignment of the original instance to the free game,
we can see that the value of the free game is at least δλ. Thus, from Lemma 13, for any
constant γ, we can find an assignment ϕ : A ∪ B → [q′] of value at least (δλ)O(1/γ)q−γ for
the free game.

From ϕ, we create an assignment ϕ′ : V → [q] as follows: enumerate through the vertices
v ∈ V , pick either the assignment to the copy of v in A or the copy of v in B that satisfies
more edges considering only the assignment so far. It is not hard to see that this assignments
satisfies at least half as many edges with respect to the original instance as that of ϕ with
respect to the free game instance. As a result, we can conclude that ϕ′ we got has value
at least Ω((δλ)O(1/γ)N−γ) regarding the instance (q, V,E, {Ce}e∈E), which completes our
proof for the main theorem. J

Now, we finally give the proof for Lemma 13. As mentioned in the introduction, the main
idea of the proof is a trade-off between the greedy algorithm and the choice reduction
algorithm. In other words, either the greedy assignment has high value, or we can reduce
the number of candidates of the optimal assignment for many variables significantly by
assigning only one variable. This argument needs to be applied multiple times to arrive
at the result; the more variables we iterate on, the better guarantee we get on the output
assignment value.

For the purpose of analysis, we will define our algorithm recursively and use induction to
show that the output assignment meets the desired criteria.

Proof of Lemma 13. First, let us define notation that we will use throughout the proof.
For a free game (q, A,B, {C(a,b)}(a,b)∈A×B), define EOPT to be the set of edges satisfied by
{σOPTu }u∈V . In other words, EOPT = {(u, v) ∈ E | C(u,v)(σOPTu , σOPTv ) = 1}. We also
define ΓOPT (u) to be the neighborhood of u with respect to (V,EOPT ) and let dOPTu be the
degree of u in (V,EOPT ), i.e., dOPTu = |ΓOPT (u)|. In addition, let n′ = n/2 be the size of A
and B.

We will prove the lemma by induction. Let P (i) represent the following statement: there ex-
ists an O

(
(nq)2i)-time algorithm Approx-FreeGamei(q, A,B, {C(a,b)}(a,b)∈A×B , {Sb}b∈B)

that takes in a free game instance (q, A,B, {C(a,b)}(a,b)∈A×B) of value λ′ and a reduced al-
phabets set Sb for every b ∈ B, and produces an assignment that satisfies at least

n′

∑
b∈B

(
dOPTb

n′

) i+1
2
(

1
|Sb|

) 1
i

1σOPT
b

∈Sb


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edges. Note here that 1σOPT
b

∈Sb denotes an indicator variable for whether σOPTb ∈ Sb.
Moreover, for convenience, we use the expression (1/|Sb|)

1
i 1σOPT

b
∈Sb to be represent zero

when Sb = ∅.

Before we proceed to the induction, let us note why P (i) implies the lemma. By setting
i = d1/γe and Sb = [q] for every b ∈ B, since σOPTb ∈ Sb for every b ∈ B, the number of
edges satisfied by the output assignment of the algorithm in P (i) is at least

n′
∑
b∈B

(
dOPTb

n′

) i+1
2
(

1
q

) 1
i

= n′
1
q1/i

∑
b∈B

(
dOPTb

n′

) i+1
2


(From Hölder’s inequality) ≥ (n′)2

q1/i

(
1
n′

∑
b∈B

dOPTb

n′

) i+1
2

= (n′)2

q1/i

(
|EOPT |

(n′)2

) i+1
2

(Since |EOPT |/(n′)2 is the value of the instance) = (n′)2

q1/i (λ′)
i+1
2

(From our choice of i) ≥ (n′)2λ
′O(1/γ)

q−γ
,

which is the statement of the lemma.

Now, we finally show that P (i) is true for every i ∈ N by induction.

Base Case. The algorithm Approx-FreeGame1(q, A,B, {C(a,b)}(a,b)∈A×B , {Sb}b∈B) is a
greedy algorithm that works as follows:

1. For each a ∈ A, assign it to σ∗a ∈ Sa that maximizes
∑
b∈B

1
|Sb|

(∑
σb∈Sb C(a,b)(σa, σb)

)
.

2. For each b ∈ B, assign it to σ∗b ∈ Sb that maximizes the number of edges satisfied, i.e.,
maximizes

∑
a∈A C(a,b)(σ∗a, σb).

It is obvious that the algorithm runs in O(n2q2) time as desired.

Next, we need to show that the algorithm gives an assignment that satisfies at least

n′

(∑
b∈B

(
dOPTb

n′

)(
1
|Sb|

)
1σOPT

b
∈Sb

)
=
∑
b∈B

dOPTb

|Sb|
1σOPT

b
∈Sb

edges.

To prove this, observe that, from our choice of σ∗b , the number of satisfied edges by the
output assignment can be bounded as follows.

∑
b∈B

∑
a∈A

C(a,b)(σ∗a, σ∗b ) ≥
∑
b∈B

1
|Sb|

∑
σb∈Sb

(∑
a∈A

C(a,b)(σ∗a, σb)
)

=
∑
a∈A

∑
b∈B

1
|Sb|

( ∑
σb∈Sb

C(a,b)(σ∗a, σb)
)

(From our choice of σ∗a) ≥
∑
a∈A

∑
b∈B

1
|Sb|

( ∑
σb∈Sb

C(a,b)(σOPTa , σb)
)
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≥
∑
a∈A

∑
b∈B

1
|Sb|

C(a,b)(σOPTa , σOPTb )1σOPT
b

∈Sb

=
∑
b∈B

∑
a∈A

1
|Sb|

C(a,b)(σOPTa , σOPTb )1σOPT
b

∈Sb

(From definition of db) =
∑
b∈B

1
|Sb|

db1σOPT
b

∈Sb

=
∑
b∈B

db
|Sb|

1σOPT
b

∈Sb .

Thus, we can conclude that P (1) is true.

Inductive Step. Let j be any positive integer. Suppose that P (j) holds.

We will now describe Approx-FreeGamej+1 based on Approx-FreeGamej as follows.

1. For each a ∈ A and σa ∈ Sa, do the following:

a. For each b ∈ B, compute Sa,σab = {σb ∈ Sb | C(a,b)(σa, σb) = 1}.

b. Call Approx-FreeGamej(q, A,B, {C(a,b)}(a,b)∈A×B , {Sa,σab }b∈B). Let the output as-
signment be ϕa,σa .

2. Execute the following greedy algorithm:

a. For each a ∈ A, assign it to σ∗a ∈ Sa that maximizes
∑
b∈B

1
|Sb|

(∑
σb∈Sb C(a,b)(σa, σb)

)
.

b. For each b ∈ B, assign it to σ∗b ∈ Sb that maximizes the number of edges satisfied,
i.e., maximizes

∑
a∈A C(a,b)(σ∗a, σb).

3. Output an assignment among the greedy assignment and ϕa,σa for every a, σa that sat-
isfies maximum number of edges.

Since every step except the Approx-FreeGamej(q, A,B, {C(a,b)}(a,b)∈A×B , {Sb}b∈B) calls
takes O((nq)2) time and we call Approx-FreeGamej only at most (nq)2 times, we can
conclude that the running time of Approx-FreeGamej+1 is O((nq)2j+2) as desired.

Define R to be n′
(∑

b∈B

(
dOPTb

n′

) j+2
2
(

1
|Sb|

) 1
j+1 1σOPT

b
∈Sb

)
, our target number of edges we

want to satisfy. The only thing left to show is that the assignment output from the algorithm
indeed satisfies at least R edges. We will consider two cases.

First, if there exists a ∈ A and σa ∈ Sb such that the output assignment from Approx-
FreeGamej(q, A,B, {C(a,b)}(a,b)∈A×B , {Sa,σab }b∈B) satisfies at least R edges, then it is ob-
vious that the output assignment of Approx-FreeGamej+1 indeed satisfies at least R
edges as well.

In the second case, for every a ∈ A and σa ∈ Sa, the output assignment from Approx-
FreeGamej(q, A,B, {C(a,b)}(a,b)∈A×B , {Sa,σab }b∈B) satisfies less than R edges. For each a ∈
A, since the output assignment from Approx-FreeGamej(q, A,B, {C(a,b)}(a,b)∈A×B , {S

a,σOPTa

b }b∈B)
satisfies less than R edges, we arrive at the following inequality:

R > n′

∑
b∈B

(
dOPTb

n′

) j+1
2
(

1
|Sa,σ

OPT
a

b |

) 1
j

1
σOPT
b

∈Sa,σ
OPT
a

b


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≥ n′
 ∑
b∈ΓOPT (a)

(
dOPTb

n′

) j+1
2
(

1
|Sa,σ

OPT
a

b |

) 1
j

1
σOPT
b

∈Sa,σ
OPT
a

b

 .

Now, observe that, for every b ∈ ΓOPT (a), we have 1
σOPT
b

∈Sa,σ
OPT
a

b

= 1σOPT
b

∈Sb . This is

because, from our definition of ΓOPT , C(a,b)(σOPTa , σOPTb ) = 1 for every b ∈ ΓOPT (a), which
means that, if σOPTb is in Sb, then it remains in Sa,σ

OPT
a

b . Thus, the above inequality can be
written as follows:

R > n′

 ∑
b∈ΓOPT (a)

(
dOPTb

n′

) j+1
2
(

1
|Sa,σ

OPT
a

b |

) 1
j

1σOPT
b

∈Sb

 . (1)

We will use inequality 1 later in the proof. For now, we will turn our attention to the number
of edges satisfied by the greedy algorithm, which, from our choice of σ∗b , can be bounded as
follows:

∑
b∈B

∑
a∈A

C(a,b)(σ∗a, σ∗b ) ≥
∑
b∈B

1
|Sb|

∑
σb∈Sb

(∑
a∈A

C(a,b)(σ∗a, σb)
)

=
∑
a∈A

∑
b∈B

1
|Sb|

( ∑
σb∈Sb

C(a,b)(σ∗a, σb)
)

(From our choice of σ∗a) ≥
∑
a∈A

∑
b∈B

1
|Sb|

( ∑
σb∈Sb

C(a,b)(σOPTa , σb)
)

(Since C(a,b)(σOPTa , σb) = 1 for every σb ∈ S
a,σOPTa

b ) ≥
∑
a∈A

∑
b∈B

1
|Sb|
|Sa,σ

OPT
a

b |

=
∑
a∈A

∑
b∈B

|Sa,σ
OPT
a

b |
|Sb|

≥
∑
a∈A

∑
b∈ΓOPT (a)

|Sa,σ
OPT
a

b |
|Sb|

.

Moreover, from inequality 1, we can derive the following inequalities:

Rj

∑
a∈A

∑
b∈ΓOPT (a)

|Sa,σ
OPT
a

b |
|Sb|


=
∑
a∈A

Rj

 ∑
b∈ΓOPT (a)

|Sa,σ
OPT
a

b |
|Sb|


(Inequality 1) ≥ (n′)j

∑
a∈A

 ∑
b∈ΓOPT (a)

(
dOPTb

n′

) j+1
2
(

1
|Sa,σ

OPT
a

b |

) 1
j

1σOPT
b

∈Sb

j ∑
b∈ΓOPT (a)

|Sa,σ
OPT
a

b |
|Sb|


(Hölder’s inequality) ≥ (n′)j

∑
a∈A

 ∑
b∈ΓOPT (a)

(
dOPTb

n′

) j
2
(

1
|Sb|

) 1
j+1

1σOPT
b

∈Sb

j+1
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By applying Hölder’s inequality once again, the last term above is at least

(n′)jn′
 1
n′

∑
a∈A

∑
b∈ΓOPT (a)

(
dOPTb

n′

) j
2
(

1
|Sb|

) 1
j+1

1σOPT
b

∈Sb

j+1

=

∑
b∈B

∑
a∈ΓOPT (b)

(
dOPTb

n′

) j
2
(

1
|Sb|

) 1
j+1

1σOPT
b

∈Sb

j+1

(Since dOPTb = |ΓOPT (b)|) =

∑
b∈B

dOPTb

(
dOPTb

n′

) j
2
(

1
|Sb|

) 1
j+1

1σOPT
b

∈Sb

j+1

=

n′∑
b∈B

(
dOPTb

n′

) j+2
2
(

1
|Sb|

) 1
j+1

1σOPT
b

∈Sb

j+1

= Rj+1.

Hence, we can conclude that

∑
a∈A

∑
b∈ΓOPT (a)

|Sa,σ
OPT
a

b |
|Sb|

≥ R.

In other words, our greedy algorithm satisfies at least R edges, which means that P (j + 1)
is also true for this second case.

As a result, P (i) is true for every positive integer i, which completes the proof for Lemma 13.
J

5 Approximation Algorithm for Projection Games

In this section, we will present our approximation algorithm for projection games. The
main idea of this algorithm is a reduction from projection games on dense random graphs
to free games, which we use together with the approximation algorithm for free games from
Corollary 9 above to prove Theorem 10. The reduction’s properties can be stated formally
as follows.

I Lemma 14. There is a polynomial-time reduction from a satisfiable projection game
(q, A,B,E, {πe}e∈E) where (A,B,E) is sampled from a distribution G(n/2, n/2, p) where
p ≥ 10

√
logn/n to a satisfiable free game instance (q′, A′, B′, {C(a,b)}(a,b)∈A′×B′) such that,

with probability 1− o(1),

1. |A′|, |B′| ≤ |A| and q′ ≤ q, and

2. For any 1 ≥ ε ≥ 0, given an assignment ϕ′ : A′ ∪ B′ → [q] to the free game instance
of value ε, one can construct an assignment ϕ : A ∪ B → [q] for the projection game of
value Ω(ε) in polynomial time.

Before we describe the reduction, we give a straightforward proof for Theorem 10 based on
the above lemma.
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Proof of Theorem 10 based on Lemma 14. The proof is simple. First, we use the reduc-
tion from Lemma 14 to transform a projection game on dense graph to a free game. Since
the approximation ratio deteriorates by only constant factor with probability 1 − o(1) in
the reduction, we can use the approximation algorithm from Corollary 9 with λ = 1, which
gives us an assignment of value at least Ω(1/Nγ). J

To prove the reduction lemma, we use the following two properties of random graphs. We
do not prove the lemmas as they follow from a standard Chernoff bound.

I Lemma 15. When p ≥ 10
√

logn/n, with probability 1 − o(1), every vertex in G ∼
G(n/2, n/2, p) has degree between np/10 and 10np.

I Lemma 16. In G ∼ G(n/2, n/2, p) with p ≥ 10
√

logn/n, with probability 1− o(1), every
pair of vertices a, a′ on the left has at least np2/10 common neighbors.

Now, we are ready to prove the reduction lemma. Roughly speaking, the idea of the proof
is to “square” the projection game, i.e., use A as the vertices of the new game and, for each
pair of vertices in A, add a constriant between them based on their constraints with their
common neighbors in the projection game. This can be formalized as follows.

Proof of Lemma 14. The reduction proceeds as follows.

1. Partition A into A1, A2 of equal sizes. Then, set A′ ← A1, B
′ ← A2 and q′ ← q.

2. For each a1 ∈ A1, a2 ∈ A2, σa1 , σa2 ∈ [q], let C(a1,a2)(σa1 , σa2) to be one if and only if
these two assignments agree on every b ∈ Γ(a1)∩Γ(a2). In other words, C(a1,a2)(σa1 , σa2) =
1 if and only if π(a1,b)(σa1) = π(a2,b)(σa2) for every b ∈ Γ(a1) ∩ Γ(a2).

It is obvious that the reduction runs in polynomial time, the first condition holds, and the
new game is satisfiable. Thus, we only need to prove that, with probability 1 − o(1), the
second condition is indeed true.

To show this, we present a simple algorithm that, given an assignment ϕ′ : A′ ∪B′ → [q] of
the free game instance of value ε, output an assignment ϕ : A ∪ B → [q] of the projection
game of value Ω(ε). The algorithm works greedily as follows.

1. For each a ∈ A, let ϕ(a)← ϕ(a).

2. For each b ∈ B, pick ϕ(b) = σ∗b to be the assignment to b that satisfies maximum number
of edges, i.e., maximize |{a ∈ Γ(b) | π(a,b)(ϕA(a)) = σb}|.

Trivially, the algorithm runs in polynomial time. Thus, we only need to prove that, with
probability 1−o(1), the produced assignment is of value at least Ω(ε). To prove this, we will
use the properties from Lemma 15 and Lemma 16, which holds with probability 1− o(1).

The number of satisfied edges can be rearranged as follows.∑
b∈B

∑
a∈Γ(b)

1π(a,b)(ϕ(a))=ϕ(b)

=
∑
b∈B

∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σ∗
b
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=
∑
b∈B

 1
db

 ∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σ∗
b

 db


=
∑
b∈B

 1
db

 ∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σ∗
b

 ∑
σb∈[q]

∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σb


=
∑
b∈B

 1
db

∑
σb∈[q]

 ∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σ∗
b

 ∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σb


(From the choice of σ∗b ) ≥

∑
b∈B

 1
db

∑
σb∈[q]

 ∑
a∈Γ(b)

1π(a,b)(ϕ′(a))=σb

2


=
∑
b∈B

 1
db

∑
σb∈[q]

∑
a,a′∈Γ(b)

1π(a,b)(ϕ′(a))=σb1π(a′,b)(ϕ′(a′))=σb


=
∑
b∈B

 1
db

∑
a,a′∈Γ(b)

∑
σb∈[q]

1π(a,b)(ϕ′(a))=σb1π(a′,b)(ϕ′(a′))=σb


Observe that

∑
σb∈[q] 1π(a,b)(ϕ′(a))=σb1π(a′,b)(ϕ′(a′))=σb = 1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′)). Thus, the

number of satisfied edges is at least

∑
b∈B

 1
db

∑
a,a′∈Γ(b)

1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′))

 .

Moreover, from Lemma 15, db ≤ 10np for every b ∈ B with probability 1−o(1). This implies
that, with probability 1− o(1), the output assignment satisfied at least

1
10np

∑
b∈B

∑
a,a′∈Γ(b)

1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′))

edges.

We can further reorganize this quantity as follows.

1
10np

∑
b∈B

∑
a,a′∈Γ(b)

1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′)) ≥
1

10np
∑
b∈B

∑
(a,a′)∈A′×B′
s.t. a,a′∈Γ(b)

1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′))

= 1
10np

∑
(a,a′)∈A′×B′

∑
b∈Γ(a)∩Γ(a′)

1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′)).

Now, observe that, from its definition, if C(a,a′)(ϕ′(a), ϕ′(a′)) is one, then 1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′))
is also one for every b ∈ Γ(a) ∩ Γ(a′). Thus, we have

1
10np

∑
(a,a′)∈A′×B′

∑
b∈Γ(a)∩Γ(a′)

1π(a,b)(ϕ′(a))=π(a′,b)(ϕ′(a′))

≥ 1
10np

∑
(a,a′)∈A′×B′

∑
b∈Γ(a)∩Γ(a′)

C(a,a′)(ϕ′(a), ϕ′(a′))
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= 1
10np

∑
(a,a′)∈A′×B′

|Γ(a) ∩ Γ(a′)|C(a,a′)(ϕ′(a), ϕ′(a′)).

From Lemma 16, with probability 1−o(1), |Γ(a)∩Γ(a′)| ≥ np2/10 for every (a, a′) ∈ A′×B′.
Hence, we can conclude that the above expression is, with probability 1− o(1), at least

1
10np

∑
(a,a′)∈A′×B′

np2

10 C(a,a′)(ϕ′(a), ϕ′(a′)) = p

100
∑

(a,a′)∈A′×B′
C(a,a′)(ϕ′(a), ϕ′(a′)).

Next, note that
∑

(a,a′)∈A′×B′ C(a,a′)(ϕ′(a), ϕ′(a′)) is the number of edges satisfied by ϕ′ in
the free game, which is at least ε|A′||B′| = εn2/16. Thus, we have

p

100
∑

(a,a′)∈A′×B′
C(a,a′)(ϕ′(a), ϕ′(a′)) ≥ εn2p

1600 .

Finally, again from Lemma 15, the total number of edges is at most 5n2p with probability
1 − o(1). As a result, with probability 1 − o(1), the algorithm outputs an assignment that
satisfies at least ε

8000 = Ω(ε) fraction of edges of the projection game instance as desired. J

6 Approximation Algorithm for Densest k-Subgraph

The main goal of this section is to prove Corollary 11. As stated previously, we simply
use our algorithm from Theorem 8 together with a reduction from Max 2-CSP to DkS
from [10]. First, let us start by stating the reduction from Theorem 8, which we rephrase as
follows.

I Lemma 17 ([10]). There exists a randomized polynomial-time algorithm that, given a
graph G of N vertices and an integer k ≤ N , produce an instance (q, V,E, {Ce}e∈E) of
Max 2-CSP such that

q ≤ N,n = k, and

any solution to the instance can be translated in polynomial time to a subgraph of G of
k vertices such that the number of edges in the subgraph equals to the number of edges
satisfied by the Max 2-CSP solution, and

with constant probability, the number of edges satisfied by the optimal solution to the
instance is at least 1/100 times the number of edges in the densest k-subgraph of G.

We will not show the proof of Lemma 17 here; please refer to Theorem 6 from [10] for
the proof. Instead, we will now show how to use the reduction to arrive at the proof of
Corollary 11.

Proof of Corollary 11. First, we note that, to prove Corollary 11, it is enough to find a
randomized polynomial-time algorithm with similar approximation guarantee to that in
Corollary 11 except that the probability of success is a constant (instead of high probability
as stated in Corollary 11). This is because we can then repeatedly run this algorithm
Θ(logn) times and produce the desired result.

The algorithm proceeds as follows:
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1. Use the reduction from Lemma 17 on the input graphG and k to produce (q, V,E, {Ce}e∈E).

2. Run the algorithm from Theorem 8 on (q, V,E, {Ce}e∈E).

3. Transform the assignment from previous step according to Lemma 17 and output the
result.

From the property of the reduction, we know that, with constant probability, the optimal
assignment to (q, V,E, {Ce}e∈E) satisfies Ω(δk2) edges. If this is the case, we can conclude
that the density of (V,E) is Ω(δ) and, similarly, that the value of the instance is Ω(δ). As
a result, the output assignment from step 2 has value at least Ω(δO(1/γ)N−γ). Since the
reduction from Lemma 17 preserves the optimum, our algorithm produces a subgraph of
density at least Ω(δO(1/γ)N−γ) as well, which concludes our proof for this corollary. J

7 QPTAS for Dense Max 2-CSPs

At first glance, it seems that the QPTAS would follow easily for our main theorem. This,
however, is not the case as the algorithm in the main theorem always loses at least a constant
factor. Instead, we need to give an algorithm that is similar to that of the main theorem
but have a stronger guarantee in approximation ratio, which can be stated as follows.

I Lemma 18. For every positive integer i > 0, there exists an O
(
(nq)O(i))-time algorithm

that, for any satisfiable Max 2-CSP instance on the complete graph, produces an assignment
of value at least 1/q1/i.

Lemma 18 can be viewed as a special case of the main theorem when the graph is complete.
However, it should be noted that Lemma 18 is more exact in the sense that the guaranteed
lower bound of the value of the output assignment is not asymptotic. The proof of this lemma
is also similar to that of Lemma 13 except that we need slightly more complicated algorithm
and computation to deal with the fact that the underlying graph is not bipartite.

Proof of Lemma 18. We will prove the lemma by induction. Note that through out the
proof, we will not worry about the randomness that the algorithm employs; it is not hard to
see that the random assignment algorithms described below can be derandomized via greedy
approach so that the approximation guarantees are as good as the expected guarantees of
the randomized ones and that we still end up with the same asymptotic running time.

Let P (i) represent the following statement: there exists anO
(
(nq)3i)-time algorithm Approx-

CompleteGamei(q, V,E, {Ce}e∈E , {Su}u∈V ) that takes in a satisfiable Max 2-CSP in-
stance (q, V,E, {Ce}e∈V ) where (V,E) is a complete graph and a reduced alphabets set Su
for every u ∈ U such that, if σOPTu ∈ Su for every u ∈ V , then the algorithm outputs an

assignment of value at least
(∏

u∈V
1
|Su|

) 1
ni .

Observe that P (i) implies the lemma by simply setting Su = [q] for every u ∈ V .

Base Case. The algorithm Approx-CompleteGame1(q, V,E, {Ce}e∈E , {Su}u∈V ) is a simple
random assignment algorithm. However, before we randomly pick the assignment, we need
to first discard the alphabets that we know for sure are not optimal. More specifically,
Approx-CompleteGame1(q, V,E, {Ce}e∈E , {Su}u∈V ) works as follows.
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1. While there exists u, v ∈ U and σu ∈ Su such that C(u,v)(σu, σv) = 0 for every σv ∈ Sv,
remove σu from Su.

2. For each u ∈ V , pick ϕ(u) independently and uniformly at random from Su. Output ϕ.

It is obvious that the algorithm runs in O(n3q3) time as desired.

Now, we will show that, if σOPTu ∈ Su for every u ∈ V , then the algorithm gives an

assignment that is of value at least
(∏

u∈V
1
|Su|

) 1
n in expectation.

First, observe that σOPTu remains in Su after step 1 for every u ∈ V . This is because
C(u,v)(σOPTu , σOPTv ) = 1 for every v 6= u.

Next, Consider the expected number of satisfied edges by the output assignment, which can
be rearranged as follows:

E

 ∑
(u,v)∈E

C(u,v)(ϕ(u), ϕ(v))

 =
∑

(u,v)∈E

E
[
C(u,v)(ϕ(u), ϕ(v))

]
=

∑
(u,v)∈E

1
|Su||Sv|

∑
σu∈Su

∑
σv∈Sv

C(u,v)(σu, σv).

From the condition of the loop in step 1, we know that after the loop ends, for each σu ∈ Su,
there must be at least one σv ∈ Sv such that C(u,v)(σu, σv) = 1. In other words,∑

σu∈Su

∑
σv∈Sv

C(u,v)(σu, σv) ≥
∑
σu∈Su

1 = |Su|.

Similarly, we can also conclude that∑
σu∈Su

∑
σv∈Sv

C(u,v)(σu, σv) ≥ |Sv|.

Thus, we have ∑
σu∈Su

∑
σv∈Sv

C(u,v)(σu, σv) ≥ max{|Su|, |Sv|}

for every u 6= v.

Hence, we can bound the expected number of satisfied edges as follows:∑
(u,v)∈E

1
|Su||Sv|

∑
σu∈Su

∑
σv∈Sv

C(u,v)(σu, σv) ≥
∑

(u,v)∈E

1
|Su||Sv|

max{|Su|, |Sv|}

=
∑

(u,v)∈E

1
min{|Su|, |Sv|}

≥
∑

(u,v)∈E

1√
|Su||Sv|

(A.M. - G.M. inequality) ≥ |E|

 ∏
(u,v)∈E

1√
|Su||Sv|

 1
|E|
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= |E|

 ∏
(u,v)∈E

1√
|Su||Sv|

 2
n(n−1)

(Each u ∈ V appears in exactly n− 1 edges) = |E|

(∏
u∈V

1
|Su|

)(n−1)/2
 2

n(n−1)

= |E|
(∏
u∈V

1
|Su|

)1/n

,

which implies that P (1) is true as desired.

Inductive Step. Let j be any positive integer. Suppose that P (j) holds.

We will now describe Approx-CompleteGamej+1 based on Approx-CompleteGamej
as follows.

1. Define R to be
(∏

u∈V
1
|Su|

) 1
n(j+1) , our target value we want to achieve.

2. Run the following steps 2(a)i to 2(a)iv until no Su is modified by neither step 2(a)iv nor
step 2(a)ii.

a. For each u ∈ V and σu ∈ Su, do the following:

i. For each v ∈ V , compute Su,σuv = {σv ∈ Sv | C(u,v)(σu, σv) = 1}. This is the set of
reduced assignment of v if we assign σu to u. Note that when v = u, let Su = {σu}.

ii. If Su,σuv = ∅ for some v ∈ V , then remove σu from Su and continue to the next
u, σu pair.

iii. Compute Ru,σu =
(∏

v∈V
1

|Su,σuv |

) 1
nj . If R′ < R, continue to the next u, σu pair.

iv. Execute Approx-CompleteGamej(q, V,E, {Ce}e∈E , {Su,σuv }v∈V ). If the output
assignment is of value less than Ru,σu , then remove σu from Su. Otherwise, return
the output assignment as the output to Approx-CompleteGamej+1.

3. If the loop in the previous step ends without outputting any assignment, just output a
random assignment (i.e. pick ϕ(u) independently and uniformly at random from Su).

Observe first that the loop can run at most nq times as the total number of elements of Sv’s
for all v ∈ V is at most nq. This means that we call Approx-CompleteGamej at most
nq times. Since every step except the Approx-CompleteGamej calls takes O((nq)3) time
and we call Approx-CompleteGamej only at most n2q2 times, we can conclude that the
running time of Approx-CompleteGamej+1 is O((nq)3j+3) as desired.

The only thing left to show is that the assignment output from the algorithm indeed is of
expected value at least R. To do so, we will consider two cases.

First, if step 3 is never reached, the algorithm must terminate at step 2(a)iv. From the
return condition in step 2(a)iv, we know that the output assignment is of value at least
Ru,σu ≥ R as desired.

In the second case where step 3 is reached, we first observe that when we remove su from Su in
step 2(a)iv, the instance is still satisfiable. The reason is that, if σu = σOPTu is the optimal as-
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signment for u, then σOPTv remains in Su,σuv for every v ∈ V . Hence, from our inductive hypo-
thesis, the output assignment from Approx-CompleteGamej(q, V,E, {Ce}e∈E , {Su,σuv }v∈V )
must be of value at least Ru,σu . As a result, we never remove sOPTu from Su, and, thus, the
instance remains satisfiable throughout the algorithm.

Moreover, notice that, if Ru,σu ≥ R for any u, σu, we either remove σu from Su or output
the desired assignment. This means that, when step 3 is reached, Ru,σu < R for every u ∈ V
and σu ∈ Su.

Now, let us consider the expected number of edges satisfied by the random assignment.
Since our graph (V,E) is a complete, it can be written as follows.

E

 ∑
(u,v)∈E

C(u,v)(ϕ(u), ϕ(v))

 = E

1
2
∑
u∈V

∑
v∈V
v 6=u

C(u,v)(ϕ(u), ϕ(v))


= 1

2
∑
u∈V

∑
v∈V
v 6=u

E
[
C(u,v)(ϕ(u), ϕ(v))

]

= 1
2
∑
u∈V

∑
v∈V
v 6=u

1
|Su||Sv|

( ∑
σu∈Su

∑
σv∈Sv

C(u,v)(σu, σv)
)

(From definition of Su,σuv ) = 1
2
∑
u∈V

∑
v∈V
v 6=u

1
|Su||Sv|

( ∑
σu∈Su

|Su,σuv |

)

= 1
2
∑
u∈V

1
|Su|

∑
σu∈Su

∑
v∈V
v 6=u

|Su,σuv |
|Sv|


(A.M.-G.M. inequality) ≥ 1

2
∑
u∈V

1
|Su|

∑
σu∈Su

(n− 1) n−1

√√√√∏
v∈V
v 6=u

|Su,σuv |
|Sv|

= (n− 1)
2

∑
u∈V

1
|Su|

∑
σu∈Su

n−1

√√√√∏ v∈n
v 6=u
|Su,σuv |∏

v∈V
v 6=u
|Sv|

(From our definition of Ru,σu , R) = (n− 1)
2

∑
u∈V

1
|Su|

∑
σu∈Su

n−1

√
(Ru,σu)−nj
R−n(j+1)

|Su|

(Since Ru,σu < R) > (n− 1)
2

∑
u∈V

1
|Su|

∑
σu∈Su

n−1
√
|Su|Rn

= (n− 1)
2

∑
u∈V

n−1
√
|Su|Rn

= (n− 1)
2 Rn/(n−1)

(∑
u∈V

n−1
√
|Su|

)

(A.M.-G.M. inequality) ≥ (n− 1)
2 Rn/(n−1)

n n(n−1)

√∏
u∈V
|Su|


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(From our definition of R) = (n− 1)
2 Rn/(n−1)

n n(n−1)

√∏
u∈V

R−n(j+1)


= n(n− 1)

2 R(n−1−j)/(n−1)

(Since R ≤ 1 and j ≥ 0) ≥ n(n− 1)
2 R.

Since n(n−1)
2 is the number of edges in (V,E), we can conclude that the random assignment

is indeed of expected value at least R.

Thus, we can conclude that P (j + 1) is true. As a result, P (i) is true for every positive
integer i, which completes the proof for Lemma 18. J

Next, we will prove Corollary 12 by reducing it to Max 2-CSP on complete graph, and,
then plug in Lemma 18 with appropriate i to get the result.

First, observe that, since log(1+ε′) = Ω(ε′) for every 1 ≥ ε′ > 0, by plugging in i = C log q/ε′
for large enough constant C into Lemma 18, we immediately arrive the following corollary.

I Corollary 19. For any 1 ≥ ε′ > 0, there exists an (1 + ε′)-approximation algorithm for
satisfiable Max 2-CSP on the complete graph that runs in time NO(ε′−1 logN).

Now, we will proceed to show the reduction and, thus, prove Corollary 12.

Proof of Corollary 12. First of all, notice that, since 1
1+ε = 1−Θ(ε). It is enough for us to

show that there exists a NO(ε−1δ−1 logN)-time algorithm for satisfiable δ-dense Max 2-CSP
that produces an assignment of value at least 1− ε.

On input (q, V,E, {Ce}e∈E), the algorithm works as follows:

1. Construct a Max 2-CSP instance (q, V,E′, {C ′e}e∈E′) where (V,E′) is a complete graph
and C ′e is defined as Ce if e ∈ E. Otherwise, Ce := 1. In other words, we put in dummy
constraints that are always true just to make the graph complete.

2. Run the algorithm from Corollary 19 on (q, V,E′, {C ′e}e∈E′) with ε′ = εδ and output the
assignment got from the algorithm.

To see that the algorithm indeed produces an assignment with value 1 − ε for the in-
put instance, first observe that, since (q, V,E, {Ce}e∈E) is satisfiable, (q, V,E′, {C ′e}e∈E′)
is trivially satisfiable. Thus, from Corollary 19, the output assignment has value at least
1/(1+ δε) ≥ 1− δε with respect to (q, V,E′, {C ′e}e∈E′). In other words, the assignment does
not satisfy at most δεn2 edges. Thus, with respect to the input instance, it satisfies at least
δn2 − δεn2 = (1− ε)δn2 edges. In other words, it is of value at least 1− ε as desired.

Lastly, note that the running time of this algorithm is determined by that of the algorithm
from Corollary 19, which runs in NO(ε′−1 logN) = NO(ε−1δ−1 logN) time as desired. J
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8 Conclusions and Open Questions

Finally, we conclude by listing the open questions and interesting directions related to the
techniques and problems presented here. We also provide our thoughts regarding each
question.

Can our algorithm be extended to work for Max k-CSP for k ≥ 3? Other algorithms for
approximating Max 2-CSP such as those from [2, 3, 4] are applicable for Max k-CSP
for any value of k as well. So it is possible that our technique can be employed for Max
k-CSP too.

Can one also come up with an algorithm that approximates Max 2-CSP to within Nε

factor for any ε > 0 for low-value dense Max 2-CSP? Our algorithm needs the value
λ to be N−o(1) in order to give such a ratio so it is interesting whether we can remove
or relax this condition. However, we do not think that one can remove the condition
completely because, with similar technique to the proof of Corollary 12, we can arrive at
a reduction from any Max 2-CSP to dense Max 2-CSP where the approximation ratio
is preserved but the value decreases. This means that, if we can remove the condition
on λ, then we are also able to refute the PGC. This argument nonetheless does not rule
out relaxing the condition for λ without removing it completely.

Can our QPTAS be extended to unsatisfiable instances? One of the main disadvantages
of our QPTAS is that it requires the instance to be satisfiable. This renders our QPTAS
useless against many problems such as Max 2-SAT and Max-Cut because the satis-
fiable instances of those problems are trivial. If we can extend our QPTAS to work on
unsatisfiable instances as well, then we may be able to produce interesting results for
those problems. Note, however, that, with similar argument to the preceding question,
QPTAS for low-value instances likely does not exists. Instead, the case of unsatisfiable
instances where [2, 3, 4] are successful is when they look for an additive error guarantee
instead of a multiplicative one. Currently, it is unclear whether our technique can achieve
such results.

Can one arrive at a similar or even better algorithm using SDP hierarchies? SDP hier-
archies have been very useful in finding approximation algorithms for combinatorial op-
timization problems. A natural question to ask is whether one can apply SDP hierarchies
to get similar results to ours. For example, can the O(i)-level of the Lasserre hierarchy
produce an approximation algorithm with ratio O(q1/i) for dense Max 2-CSP? If so,
then this may also be an interesting direction to pursue an algorithm with guarantee
additive error discussed previously.
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