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ABSTRACT
Given a function f : Fm → F over a finite field F, a low degree
tester tests its agreement with an m-variate polynomial of
total degree at most d over F. The tester is usually given
access to an oracle A providing the supposed restrictions of f
to affine subspaces of constant dimension (e.g., lines, planes,
etc.). The tester makes very few (probabilistic) queries to
f and to A (say, one query to f and one query to A), and
decides whether to accept or reject based on the replies.

We wish to minimize two parameters of a tester: its error
and its size. The error bounds the probability that the
tester accepts although the function is far from a low degree
polynomial. The size is the number of bits required to write
the oracle replies on all possible tester’s queries.

Low degree testing is a central ingredient in most con-
structions of probabilistically checkable proofs (PCP s) and
locally testable codes (LTCs). The error of the low degree
tester is related to the soundness of the PCP and its size is
related to the size of the PCP (or the length of the LTC).

We design and analyze new low degree testers that have
both sub-constant error o(1) and almost-linear size n1+o(1)

(where n = |F|m). Previous constructions of sub-constant
error testers had polynomial size [3, 16]. These testers en-
abled the construction of PCP s with sub-constant sound-
ness, but polynomial size [3, 16, 9]. Previous constructions
of almost-linear size testers obtained only constant error [13,
7]. These testers were used to construct almost-linear size
LTCs and almost-linear size PCP s with constant soundness
[13, 7, 5, 6, 8].

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Com-
plexity of proof procedures; E.4 [Coding and Information
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Theory]; F.2.1 [Numerical Algorithms and Problems]:
Computations on polynomials, Computations in finite fields.

General Terms
Theory.
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1. INTRODUCTION

1.1 Low Degree Testing
Let F be a finite field, let m be a dimension and let d be

a degree. [A particular setting of parameters to have in mind is

the one used in construction of PCP s and LTCs: a large field

F, and a fairly large degree d, which is, nonetheless, considerably

smaller than |F|; specifically, md
|F| ≤ o(1), but md ≥ |F|1−o(1)].

Define P to be the set of all m-variate polynomials of
total degree at most d over F. The agreement of a function
f : Fm → F with a low degree polynomial is

agr(f,P)
def
= max

Q∈P

�
Pr

~x∈Fm
[f(~x) = Q(~x)]

�
Note that agr(f,P) is simply 1−∆(f,P), where ∆ denotes
the (normalized) Hamming distance.

A low degree tester is a probabilistic procedure M that
is meant to check the agreement of a function f with a low
degree polynomial by making as few queries to f as possible.
If f ∈ P, M should always accept, while if f is far from P
(i.e., agr(f,P) is small) M should be likely to reject.

It is easy to see that when having oracle access only to
f , any low degree tester must make more than d queries.
To break this degree barrier, the low degree tester is usu-
ally given access to an additional oracle A providing the
supposed restrictions of f to affine subspaces of constant di-
mension (e.g., lines, planes, etc.). The convention is that
these restrictions in themselves are polynomials of total de-
gree at most d over the subspaces. The tester is required to
satisfy:

• Completeness: If f ∈ P, there is an oracle A that
makes the tester accept with prob. 1.

• Soundness: If agr(f,P) is small, then for every oracle
A, the tester is not likely to accept.



Rubinfeld and Sudan [17] designed the Line vs. Point
tester that makes only two probabilistic queries. This tester
picks independently at random a line l in Fm and a point
~x ∈ l, queries the oracle A for the (supposed) restriction of
f to l (which is simply a univariate polynomial of degree at
most d over F), queries f at ~x, and checks whether the two
restrictions are consistent on ~x, i.e., A(l)(~x) = f(~x).

Low degree testers enabled the construction of Probabilis-
tically Checkable Proofs (PCP s) [4, 10, 2, 1] and Locally
Testable Codes (LTCs) [12, 13], hence their great impor-
tance. These applications motivated further improvements
to low degree testing.

Specifically, the following parameters were of interest:

1. Queries: How many queries does the tester make?
(should be a constant; preferably 2).

and two more parameters to be thoroughly discussed
in the next subsections:

2. Error: How sound is the tester?

3. Size: How many bits are needed to write the oracle
replies on all possible queries?

1.1.1 Error
To prove that a low degree tester is sound, most results

address contrapositive arguments of the following type: as-
sume that the tester accepts with probability γ ≥ γ0 and
show the existence of a low degree polynomial that agrees
with f on at least ≈ γ of the points. In this case, we say that
γ0 bounds the error of the tester, since the probability that
the tester accepts although the function is very far from a
low degree polynomial is at most γ0.

The first analyses of the Line vs. Point tester [17, 2, 12]
only showed that the error of the tester is bounded away
from 1. The error can be amplified to any constant, by a
constant number of repetitions. Nevertheless, to keep the
total number of queries constant, one cannot perform more
than a constant number of repetitions.

Only a later, more careful, inspection [3, 16] revealed
that there are low degree testers with a sub-constant er-
ror. Specifically, [3, 16] proved claims of the following type
for various low degree testers: there exist (large enough)
constants C ≥ 1, a, b ≥ 0, and a (small enough) constant
0 < c ≤ 1, such that the error is at most Cmadb/|F|c. In
other words, the error can be made arbitrarily small by tak-
ing m and d to be small enough with respect to |F|. The
number of queries remains 2.

Arora and Sudan [3] proved that the error of the Line vs.
Point tester is in fact sub-constant. Their proof was very al-
gebraic in nature. Raz and Safra [16] proved a sub-constant
error for a slightly different tester, considering planes that
intersect by a line, or a plane and a point within it. Their
proof was more combinatorial in nature. The two proofs led
to the construction of PCP s with sub-constant soundness
[3, 16, 9].

1.1.2 Size
Let us represent the set of honest oracles by a code. That

is, for every polynomial Q : Fm → F of degree at most d,
we have a codeword. The codeword has an entry for every
affine subspace s that the tester may query. This entry
contains the oracle’s reply when it is queried regarding s,
i.e., the restriction of Q to s. The size of a tester is the

length (in bits) of a codeword. For instance, the size of
Rubinfeld and Sudans’ Line vs. Point tester [17] is roughly
|F|2m (d + 1) log |F|: For every line (defined by two points),
the oracle should provide a univariate polynomial of degree
at most d over F.

Alternatively, we refer to the randomness of the tester,
which is the amount of random bits that the tester requires.
For instance, to pick a random line and a random point
within it, we merely have to pick a random point and a
random direction in Fm. Hence, the randomness of the Line
vs. Point tester [17] is 2m log |F|.

The size of a tester is measured with respect to n = |F|m.
For instance, the size of the Line vs. Point tester [17] is

quadratic n2+o(1). The size of a tester is related to the
size of probabilistically checkable proofs and locally testable
codes constructed using it. Hence, Goldreich and Sudan [13]
suggested to improve the Line vs. Point tester by consid-
ering a relatively small subset of lines (instead of all lines).
Goldreich and Sudan achieved non-explicit constant error
tester of almost-linear size n1+o(1), instead of quadratic size
n2+o(1). Shortly afterwards, Ben-Sasson, Sudan, Vadhan
and Wigderson [7] gave an explicit construction of a constant
error Line vs. Point tester of almost-linear size. Their idea
was to choose a line by picking a uniformly distributed point
over Fm (as before), and a direction that is uniformly dis-
tributed over a small ε-biased set within Fm. They showed
that the error of this tester is bounded away from 1. Unfor-
tunately, their elegant analysis is inherently applicable only
for acceptance probability γ > 1

2
.

The work of [13, 7] gave rise to explicit constructions of
almost-linear size LTCs and PCP s with constant sound-
ness [13, 7, 5]. The recent work of Dinur [8] also depicts
almost-linear size LTCs and PCP s with constant sound-
ness, based on the PCP theorem of [2, 1] and the work of
Ben-Sasson and Sudan [6]. Both use low degree testers with
constant error. Dinur’s work [8] also gives new constructions
of PCP s and LTCs without low degree testers. However, at
this point, these constructions achieve neither sub-constant
error nor almost-linear size.

1.2 Our Contribution: Randomness-Efficient
Sub-Constant Error Testers

We design and analyze two low degree testers that have
both sub-constant error and almost-linear size. Potential
applications of our constructions are constructions of locally
testable codes and PCP s with sub-constant soundness and
almost-linear size (and a constant number of queries).

Our key idea is to consider a subfield H ⊆ F, and generate
subspaces by picking directions uniformly over Hm, instead
of over Fm. The field structure of H allows us to use the
combinatorial approach of Raz and Safra [16], and, more
importantly, it allows us to use induction: the structure of
the problem when restricted to affine subspaces of dimension
k ≤ m is the same as its structure in Fm.

As in the analysis of Raz and Safra [16], we abandon the
Line vs. Point test, and address subspaces of dimension
larger than 1, rather than lines. Specifically, given access
to f and to an oracle A, our Randomness-Efficient Plane
vs. Point tester chooses a plane and a point within it and
checks that they are consistent:



1. Pick uniformly and independently at random ~z ∈
Fm, ~y1, ~y2 ∈ Hm.

2. Accept if either ~y1, ~y2 are linearly dependent, or
if the plane p through ~z in directions ~y1, ~y2 sat-
isfies A(p)(~z) = f(~z).

Figure 1: Randomness-Efficient Plane vs. Point

Note that the same plane p goes through many points
~z ∈ Fm and in many directions ~y1, ~y2 ∈ Hm. However, the
oracle’s reply A(p) depends on the plane p, and not on its
representation given by ~z and ~y1, ~y2.

For H = F, the Randomness-Efficient Plane vs. Point
Tester is exactly the Plane vs. Point tester of Raz and
Safra [16]. However, in our work the more interesting case is

|H| ≤ |F|o(1). In this case, the tester requires only m log |F|+
2m log |H| = m log |F| (1 + o(1)) bits of randomness. This

corresponds to an almost linear size n1+o(1) (recall that
n = |Fm|). The tester is randomness efficient in compar-
ison to all known testers with sub-constant error, such as
the tester of Arora and Sudan [3] that requires 2m log |F|
bits of randomness and the tester of Raz and Safra [16] that
requires 3m log |F| bits of randomness. As to testers with
constant error : that of Ben-Sasson, Sudan, Vadhan and
Wigderson [7] requires m log |F|+ polylog(m, log |F|) bits of
randomness, which is (usually) less than the randomness of
our tester, but the difference is only in the dependence of
the low order term in m.

The tester is clearly complete, namely, if there exists a
polynomial Q : Fm → F of degree at most d, such that for
every ~x ∈ Fm, f(~x) = Q(~x), and for every affine subspace
s, the oracle A replies A(s) = Q|s, then the tester accepts
with probability 1. We show that the tester is also sound :
if the tester accepts with probability γ then f agrees with
a polynomial of total degree at most md on at least γ − ε

of the points in Fm, where ε ≤ const · m
�

8
q

1
|H| + 4

q
md
|F|
�
.

Note that the analysis works for any acceptance probability
γ. In particular, this means that when γ is significantly
larger than ε, say γ ≥ 100ε, f agrees with a polynomial
of total degree at most md on at least ≈ γ of the points.
[Even if H = F, the constants 4 and 8 in the error expression
appear to improve on the results of [3, 16], where unspecified
constants were given].

The downside of the Randomness-Efficient Plane vs. Point
tester is that it only allows us to argue something about the
agreement of the oracle with a polynomial of a relatively
low degree md, rather than d. Hence, we design another
tester that has essentially the same parameters, but ensures
agreement with a polynomial of degree at most d.

The additional consideration that comes into play when
designing the new tester is degree preservation. We want the
total degree of a polynomial not to decrease when restricted
to most of the subspaces queried by the tester. We achieve
this by picking one of the directions for the subspace (rather
than the base-point) uniformly from Fm. In order to keep
the size almost linear, this tester considers linear subspaces
(i.e., affine subspaces through the origin), rather than gen-
eral affine subspaces. A related technique was previously
used by [7].

Specifically, given access to f and to an oracle A, the
Randomness-Efficient Subspace vs. Point tester chooses a
three dimensional subspace and a point within it and checks
that they are consistent:

1. Pick uniformly and independently at random ~z ∈
Fm, ~y1, ~y2 ∈ Hm.

2. Accept if either ~z, ~y1, ~y2 are linearly dependent,
or if the linear subspace s spanned by ~z, ~y1, ~y2

satisfies A(s)(~z) = f(~z).

Figure 2: Randomness-Efficient Subspace vs. Point
This tester uses the same number of random bits as the

Randomness-Efficient Plane vs. Point tester, namely, it uses
m log |F|+ 2m log |H| bits, and its size is only slightly larger
(as the answer size is larger: the oracle should provide poly-
nomials over three-dimensional subspaces rather than two-
dimensional subspaces). For this small price, we manage
to prove a stronger soundness claim: if the Randomness-
Efficient Subspace vs. Point tester accepts with probability
γ, then f agrees with a polynomial of total degree at most d
(rather than md) on at least γ−ε of the points in Fm, where

ε ≤ const · m
�

8
q

1
|H| + 4

q
md
|F|
�
. This follows rather easily

from the soundness of the Randomness-Efficient Plane vs.
Point tester together with an argument showing that the
degree of the recovered polynomials must in fact be at most
d.

There is a tradeoff between the size of the testers and their
error. To make the size as small as possible, one wishes to
minimize |H|. In particular, to get an almost-linear size, one

needs to take |H| ≤ |F|o(1). On the other hand, to make the
error as small as possible, one wishes to maximize |H|. In
particular, to get a sub-constant error, one needs to take
|H| ≥ ω(m8).

All finite fields are isomorphic to GF (pk) for a prime p and
a natural number k. All subfields of GF (pk) are isomorphic
to GF (pr) for r|k. For a wide family of finite fields GF (pk)
there are subfields of suitable sizes (see [14, 11] for analysis
of the distribution of k’s with suitable divisors). Though,
indeed, not every finite field is such. We wish to emphasize
that in the settings that interest us (e.g., construction of
PCP s), we get to choose the field. For instance, we can take
F = GF (2r1·r2) for appropriate r1, r2.

1.3 Sampling
A basic step in our proof is the analysis of the sampling

properties of affine subspaces with directions over a subfield.
This analysis may be of independent interest.

By sampling we refer to assertions of the following nature:
if one colors a large enough fraction of the points in Fm green
then a subspace (e.g., a line) picked at random is likely to
hit the green points in almost their true fraction.

First, let us consider the non-randomness-efficient setting.
Consider choosing a line by picking a point and a direction
independently at random from Fm. The indicator variables
“is the i’th point on the line green?” for i = 1, . . . , |F| are
pairwise independent. Thus, one can bound the variance of
the number of green points on a line. This yields a sampling
property by Chebyshev’s inequality (see, e.g., [3]).

In the randomness-efficient setting, more subtle arguments
are needed. For instance, consider the work of Ben-Sasson,
Sudan, Vadhan and Wigderson [7]. They use an ε-biased



set S ⊆ Fm, and choose a line by independently picking
a uniformly distributed base-point in Fm and a uniformly
distributed direction in S. They show that almost pairwise
independence still holds, and this allows them to bound the
variance, by bounding the covariances.

Our set of directions is Hm, which does not have a small
bias (when H  F). Nevertheless, we are still able to prove a
sampling property. We observe that we can directly bound
the variance of the number of green points on a line by
analyzing the convolution of two relatively simple functions.
We do this by means of Fourier analysis. The difference
between the previous approaches and our approach is that
instead of giving one bound for the probability that two
points i 6= j on a line are green for every i 6= j, we directly
bound the average probability over all pairs i 6= j.

The extension to higher dimensional subspaces is a rela-
tively simple consequence of the analysis for lines.

1.4 Proof Outline
We first prove the soundness of the Randomness-Efficient

Plane vs. Point tester, and then deduce the soundness of
the Randomness-Efficient Subspace vs. Point tester from
it. Thereof, we only consider the first. Assume that the
Randomness-Efficient Plane vs. Point tester, given access
to input function f : Fm → F and oracle A, accepts with
probability γ. Let us prove the existence of a polynomial
over Fm of degree at most md that agrees with f on at least

γ − ε of the points, for ε ≤ const ·m
�

8
q

1
|H| + 4

q
md
|F|
�
.

1.4.1 Reformulating our goal
First, let us reformulate the problem in a more convenient

manner. For dimensions k, m, where k ≤ m, let Sm
k be the

family of all affine subspaces of dimension k in Fm that are
of the type we are interested in. Namely, a k-dimensional
affine subspace s ⊆ Fm is in Sm

k if it can be written as s =n
~z +

Pk
i=1 αi~yi

�� (α1, . . . , αk) ∈ Fk
o

for some point ~z ∈ Fm

and some linearly independent directions ~y1, . . . , ~yk ∈ Hm

(where the linear independence is over F).
We can express (up to very small additive errors) the ac-

ceptance probability of the tester given access to f : Fm → F
and A as follows:

Pr [tester accepts] ≈ Pr
s∈Sm

2 ,~x∈s
[A(s)(~x) = f(~x)]

= E
s∈Sm

2

�
Pr
~x∈s

[A(s)(~x) = f(~x)]

�
For an affine subspace s and a degree d, let Qs,d be the
set of polynomials of degree at most d over s. It is evident
from the last expression that an oracle A that optimizes the
acceptance probability of the tester on input f assigns each
subspace s ∈ Sm

2 a polynomial Q ∈ Qs,d that maximizes the
agreement Q(~x) = f(~x) on points ~x ∈ s. Hence, for every
dimension m, function f : Fm → F, dimension k and degree
d, consider the average agreement of f with degree d over
subspaces s ∈ Sm

k ,

agrk,m
d (f)

def
= E

s∈Sm
k

�
max

Q∈Qs,d

�
Pr
~x∈s

[Q(~x) = f(~x)]

��
Then,

γ = Pr [tester accepts] . agr2,m
d (f)

For every m, the space Fm is the only affine subspace of
dimension m in Fm, and Hm contains a basis for Fm, so
Sm

m = {Fm}. Thus, for every dimension m, function f :
Fm → F, degree d and fraction γ, agrm,m

d (f) ≥ γ means
that there exists Q : Fm → F of degree at most d, such that
Pr~x∈Fm [Q(~x) = f(~x)] ≥ γ.

We conclude that our goal can be reformulated as showing
that large average agreement over planes implies large aver-
age agreement over Fm. More accurately, for every function
f : Fm → F and fraction 0 ≤ γ ≤ 1,

agr2,m
d (f) ≥ γ ⇒ agrm,m

md (f) ≥ γ − ε

1.4.2 Main idea
Our proof is by induction on the dimension k. We assume

that agr2,m
d (f) ≥ γ, and show that for every dimension 2 ≤

k ≤ m,

agrk,m
kd (f) ≥ γ − k

m
· ε

Fix a dimension k such that agrk−1,m
(k−1)d(f) ≥ γ − k−1

m
· ε, and

let us outline how the induction step is done.
Consider any affine subspace s ∈ Sm

k . Assume s contains
the point ~z ∈ Fm and is in directions ~y1, . . . , ~yk ∈ Hm, where
~y1, . . . , ~yk are linearly independent over F. The directions
within s, {~x1 − ~x2 | ~x1, ~x2 ∈ s}, are precisely

Pk
i=1 αi~yi for

~α = (α1, . . . , αk) ∈ Fk. Moreover, since H is a subfield of F,

~α ∈ Hk ⇔
kX

i=1

αi~yi ∈ Hm

Therefore (unlike the construction of [7] via ε-biased sets),
the families of affine subspaces we consider preserve the fol-
lowing two properties enabling induction:

1. Self-similarity: Every affine subspace s ∈ Sm
k is

mapped onto Fk (via the natural bijection ~α ∈ Fk ↔
~z +

Pk
i=1 αi~yi ∈ s), such that the directions the tester

considers (namely, the vectors in Hm) that are also in
s are mapped onto Hk.

2. Uniformity: For every dimension k′ ≤ k, each sub-
space s ∈ Sm

k contains exactly the same number of
subspaces s′ ∈ Sm

k′ , and each subspace s′ ∈ Sm
k′ is

contained in exactly the same number of subspaces
s ∈ Sm

k .

Let f|s : Fk → F denote the restriction of f to s; namely,

for every (α1, . . . , αk) ∈ Fk, let f|s(α1, . . . , αk) = f(~z +Pk
i=1 αi~yi).
Consider some degree d′ and dimension k′ ≤ k. By self-

similarity and uniformity,

agrk′,m
d′ (f) = E

s∈Sm
k

h
agrk′,k

d′ (f|s)
i

(1)

Thus, it is sufficient (as we see shortly) to show that for
every function f : Fk → F and every fraction 0 ≤ γ ≤ 1,

agrk−1,k
(k−1)d(f) ≥ γ ⇒ agrk,k

kd (f) ≥ γ − ε

m
(2)

The inductive step is then completed applying the induction



hypothesis as well as 1 and 2 above:

agrk,m
kd (f) = E

s∈Sm
k

h
agrk,k

kd (f|s)
i

≥ E
s∈Sm

k

h
agrk−1,k

(k−1)d(f|s)− ε

m

i
= agrk−1,m

(k−1)d(f)− ε

m

≥ γ − k

m
· ε

1.4.3 Proving (2)
By an adaptation of an idea by Raz and Safra [16], we can

prove that there exists a small error δ ¿ ε/m, such that for
every function f : Fk → F and every fraction 0 ≤ γ ≤ 1,

agrk−1,k
(k−1)d(f) ≥ γ ⇒ agrk,k

2(k−1)d(f) ≥ γ2 − δ

The idea of Raz and Safra [16] centers around a construc-
tion of a consistency graph. The vertices of the graph are
the affine subspaces of dimension (k−1) within Fk (namely,
hyperplanes). The edges of the graph indicate whether there
is an agreement between assignments of degree (k − 1)d
polynomials to the hyperplanes. Due to its algebraic struc-
ture, the graph has a combinatorial property called almost-
transitivity. It allows us to use a graph-theoretic lemma
originally proven in [16], and go up from dimension (k − 1)
to dimension k.

The reduction to the graph-theoretic setting introduces a
certain deterioration of the degree and agreement parame-
ters. The degree doubles (from (k− 1)d to 2(k− 1)d, rather
than to kd) and the agreement is raised to the power of two
(from γ to γ2 − δ, rather than to γ − ε/m). We cannot
tolerate either deterioration, since they ultimately cause an
exponential decay in k. Hence, we apply steps of what we
call consolidation to retain the desired parameters. Similar
techniques were already used in previous works, and they
rely on the sampling properties we discussed above.

1.5 Organization
We state the main theorems regarding the completeness

and soundness of our testers in section 2. The rest of the
paper is devoted to proving these theorems. We start with
some preliminary definitions and propositions in section 3.
We discuss basic properties of affine subspaces with direc-
tions over a subfield in section 4. We prove sampling prop-
erties in section 5. This allows us to prove consolidation
claims in section 6. We present and analyze the consistency
graph in section 7 and use it for going up one dimension in
section 8. Our main theorems are proved in section 9.

2. OUR RESULTS

2.1 Notation
In all that follows, we consider a finite field F, a subfield

H ⊆ F, a dimension m, and a degree d.
Given vectors ~y1, . . . , ~yk ∈ Fm, we define the linear sub-

space they span by

span{~y1, . . . , ~yk} def
= {a1~y1 + . . . + ak~yk | a1, . . . , ak ∈ F}

We say that ~y1, . . . , ~yk are linearly independent, and denote
ind(~y1, . . . , ~yk), if for every a1, . . . , ak ∈ F, if

Pk
i=1 ai~yi = 0

then a1 = · · · = ak = 0. Throughout the paper we will refer

to span over F (and not over a subfield, even if the vectors
are over a subfield). Note that vectors ~y1, . . . , ~yk ∈ Hm are
linearly independent over H if and only if ~y1, . . . , ~yk ∈ Hm

are linearly independent over F.
Given two sets A, B ⊆ Fm, we define

A + B
def
= {~x + ~y | ~x ∈ A, ~y ∈ B }

Given a point ~x ∈ Fm and a set A ⊆ Fm, define ~x + A
def
=

{~x}+A. A k-dimensional affine subspace in the vector space
Fm is defined by a base-point ~x ∈ Fm and k linearly inde-
pendent directions, ~y1, . . . , ~yk ∈ Fm, as

affine(~x; ~y1, . . . , ~yk)
def
= ~x + span{~y1, . . . , ~yk}

Points are 0-dimensional affine subspaces. Lines are 1-
dimensional affine subspaces. Planes are 2-dimensional affine
subspaces. Every affine subspace can be equivalently repre-
sented by many choices of vectors ~x; ~y1, . . . , ~yk, but, clearly,
there is a linear transformation between every two represen-
tations of the same affine subspace.

An m-variate polynomial over a field F is a function Q :
Fm → F of the form

Q(x1, . . . , xm) =
X

i1,...,im

ai1,...,imxi1
1 · · ·xim

m

where all the coefficients ai1,...,im are in F. The degree of Q is

deg Q
def
= max

nPm
j=1 ij | ai1,...,im 6= 0

o
, where the degree

of the identically zero polynomial is defined to be 0.
The restriction of a polynomial Q : Fm → F to an affine

subspace s represented as s = affine(~x; ~y1, . . . , ~yk) is a poly-

nomial in k variables, Q|s(α1, . . . , αk)
def
= Q(~x+α1~y1 + . . .+

αk~yk). We will sometimes wish to refer to a polynomial
Q defined over an affine subspace s without specifying the
subspace’s representation, in which case we will use the no-
tation Q(~x) for a point ~x ∈ s. Note that the degree of a
polynomial does not depend on the representation.

2.2 Oracles
We assume an oracle A that given any affine subspace

s in Fm, provides a polynomial A(s) of degree at most d
defined over s. For the sake of simplicity, we do not refer
to both an oracle A and a function f : Fm → F as in the
introduction. Instead, we assume that f ’s values on points
~x are given by A(~x). Our testers query A only on affine
subspaces of constant dimension. However, for the analysis,
it will be convenient to consider oracles queried regarding
higher dimensional affine subspaces as well. Hence, an oracle
A is defined to provide a value for any affine subspace.

For a polynomial Q : Fm → F, we will use the notation
(Q ≡ A)(s) to indicate that Q and A agree on a subspace
s, i.e., for every ~x ∈ s, Q(~x) = A(s)(~x).

2.3 Low Degree Testers
Define two predicates for our two testers: for ~z ∈ Fm and

~y1, ~y2 ∈ Hm chosen uniformly at random, let:

1. PlanePointA(~z, ~y1, ~y2): ~y1, ~y2 are linearly dependent
or A(affine(~z; ~y1, ~y2))(~z) = A(~z)

2. SpacePointA(~z, ~y1, ~y2): ~z, ~y1, ~y2 are linearly dependent

or A(affine(~0; ~z, ~y1, ~y2))(~z) = A(~z)



2.4 Soundness
To prove that a tester is sound we assume that it ac-

cepts with probability γ when given access to an oracle A
and show the agreement of A with a low degree polynomial.
Specifically, for a sub-constant ε, we prove two claims, which
we argue to be essentially equivalent:

1. (decoding) There exists a low degree polynomial that
is consistent with the oracle A on at least γ − ε of the
points.

2. (list decoding) For every 0 < δ < 1, there exists a short
list of t = t(δ) low degree polynomials that explains all
the tester’s success, but δ + ε (explanation follows).

When saying that a list of polynomials explains almost all
the success, we mean that with high probability over the
random bits of the tester (i.e., over the choice of a subspace
and a point within it), either the tester rejects or one of the
polynomials agrees with the oracle on the subspace and on
the point. There is a tradeoff between the amount of success
explained and the length of the list: the more one wishes to
explain – the longer the list is.

We wish ε to be as small as possible. The parameter ε
we achieve depends on md

|F| . This comes from the use of the

Schwartz-Zippel lemma. It also depends on 1
|H| which is the

price we pay for considering the subfield H instead of the
entire field F.

The statement for the Randomness-Efficient Plane vs. Point
tester is as follows. Note that we make no effort to optimize
the constants.

Theorem 1 (Plane vs. Point Soundness). Fix a di-
mension m ≥ 2, a field F, a subfield H ⊆ F and a degree d.

Denote ε
def
= 27m

�
8
q

1
|H| + 4

q
md
|F|
�
. For every oracle A and

every success probability 0 < γ ≤ 1, satisfying

Pr
~z∈Fm,~y1,~y2∈Hm

h
PlanePointA(~z, ~y1, ~y2)

i
= γ

The following hold:

1. (Decoding) There exists a polynomial Q : Fm → F
with deg Q ≤ md, such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − ε

2. (List decoding) For every δ > 2ε, there exist t ≤
2/δ polynomials Q1, . . . , Qt : Fm → F with deg Qi ≤
md, such that with probability at least 1− δ − 2ε over
the choice of ~z ∈ Fm, ~y1, ~y2 ∈ Hm, either the test
PlanePointA(~z, ~y1, ~y2) fails, or there exists i ∈ [t],
such that (Qi ≡ A)(affine(~z; ~y1, ~y2)).

We prove a similar theorem for the Randomness-Efficient
Subspace vs. Point tester. Note that for this tester we
manage to show agreement with polynomials of degree at
most d, rather than md.

Theorem 2 (Subspace vs. Point Soundness). Fix a
dimension m ≥ 3, a field F, a subfield H ⊆ F and a degree

d. Denote ε
def
= 27m

�
8
q

1
|H| + 4

q
md
|F|
�
. For every oracle A

and every success probability 0 < γ ≤ 1, satisfying

Pr
~z∈Fm,~y1,~y2∈Hm

h
SpacePointA(~z, ~y1, ~y2)

i
= γ

The following hold:

1. (Decoding) There exists a polynomial Q : Fm → F
with deg Q ≤ d, such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ γ − 3ε

2. (List decoding) For every δ > 3ε, there exist t ≤
2/δ polynomials Q1, . . . , Qt : Fm → F with deg Qi ≤
d, such that with probability at least 1 − δ − 3ε over
the choice of ~z ∈ Fm, ~y1, ~y2 ∈ Hm, either the test
SpacePointA(~z, ~y1, ~y2) fails, or there exists i ∈ [t],

such that (Qi ≡ A)(affine(~0; ~z, ~y1, ~y2)).

It is interesting to note that our sampling arguments also
imply a converse to the above theorems: if there exists
a polynomial Q : Fm → F with deg Q ≤ d, such that
Pr~x∈Fm [Q(~x) = A(~x)] ≥ γ, then there exists an oracle A′
agreeing with A on the points and assigning affine subspaces
polynomials of degree at most d, such that both our testers
accept with probability at least γ − ε given access to A′.

3. PRELIMINARIES

3.1 Orthogonality and Vector Spaces
Given a vector ~y ∈ Fm, we write ~y = (y1, . . . , ym). For

a series of vectors ~y1, . . . , ~yk, we write for every 1 ≤ i ≤ k,
~yi = (yi,1, . . . , yi,m).

We define an inner-product between two vectors ~x, ~y ∈ Fm

as (~x, ~y)
def
=
Pm

i=1 xi · yi. We say that ~x, ~y are orthogonal if
(~x, ~y) = 0.

Proposition 3.1. For every ~y 6= ~0 ∈ Fm and c ∈ F,
Pr

~z∈Hm
[(~z, ~y) = c] ≤ 1

|H|
Proposition 3.2. For every ~y 6= ~0 ∈ Fm and k < m,

Pr
~y1,...,~yk∈Hm

[~y ∈ span{~y1, . . . , ~yk} | ind(~y1, . . . , ~yk)] ≤ 1

|H|
Proposition 3.3. For every subset A ⊆ Fm, if

Pr
~y∈Fm

[~y ∈ A] >
1

|F|
then there exist linearly independent ~y1, . . . , ~ym ∈ Fm, such
that for every 1 ≤ i ≤ m, ~yi ∈ A.

3.2 Polynomials
The Schwartz-Zippel lemma shows that different low de-

gree polynomials differ on most points,

Proposition 3.4 (Schwartz-Zippel). For two differ-
ent polynomials Q, P : Fm → F with deg Q, deg P ≤ d,

Pr
~x∈Fm

[Q(~x) = P (~x)] ≤ d

|F|
The Schwartz-Zippel lemma can be viewed as showing the
unique-decoding property of the Reed-Muller code. This
immediately implies a list decoding property, namely, that
only few polynomials can agree with a function on many of
the points.

Proposition 3.5 (list decoding of Reed-Muller).
For every function f : Fm → F, if there are t different poly-
nomials Q1, . . . , Qt : Fm → F such that for every 1 ≤ i ≤ t,

deg Qi ≤ d and Pr~x∈Fm [f(~x) = Qi(~x)] ≥ ρ for ρ ≥ 2
q

d
|F| ,

then t ≤ 2
ρ
.



4. AFFINE SUBSPACES WITH DIRECTIONS
OVER A SUBFIELD

In this section we prove basic facts regarding affine sub-
spaces in Fm that are spanned by directions over a subfield
H ⊆ F. All the properties we prove for such subspaces are
well known when H = F.

For 0 ≤ k ≤ m, consider the set of representations of
affine subspaces with directions over a subfield,

Rm
k

def
= {(~z; ~y1, . . . , ~yk) | ~z ∈ Fm, ~y1, . . . , ~yk ∈ Hm, ind(~y1, . . . , ~yk)}

The corresponding set of affine subspaces is

Sm
k

def
= {affine(r) | r ∈ Rm

k }
First we would like to assert that every subspace in Sm

k

is associated with the same number of tuples in Rm
k , and

that every subspace in Sm
k contains the same number of

subspaces in Sm
k′ for k′ ≤ k,

Proposition 4.1 (uniformity). For every dimension
k, there is a number T = T (k), such that for every s ∈ Sm

k ,
|{r ∈ Rm

k | s = affine(r)}| = T .

Proposition 4.2 (uniformity downwards). For ev-
ery dimensions k′ ≤ k, there is a number T = T (k, k′), such
that for every s ∈ Sm

k , |{s′ ∈ Sm
k′ | s′ ⊆ s}| = T .

To prove both assertions we introduce an additional notation
allowing us to refer to affine subspaces in Sm

k as isomorphic
copies of Fk. Fix an affine subspace together with a represen-
tation for it, s = affine(~z; ~y1, . . . , ~yk). For a representation
r = (~α0; ~α1, . . . , ~αk′) of an affine subspace within Fk, we de-
fine the representation r relative to (the representation of)
the space s by

rs
def
=

 
~z +

kX
i=1

~α0,i~yi ;

kX
i=1

~α1,i~yi, . . . ,

kX
i=1

~αk′,i~yi

!
Note that since ~y1, . . . , ~yk are linearly independent, if two
representations r, r′ are the same relative to a subspace s,
rs = r′s, then they are the same representation r = r′.

Denote the corresponding relative affine subspace:

affines(r)
def
= affine(rs)

Note that for every r, affines(r) ⊆ s. Moreover, if affine(r) =
affine(r′) then affines(r) = affines(r

′). Now, the above two
propositions follow from the following proposition:

Proposition 4.3. For every subspace s ∈ Sm
k , for every

dimension k′ ≤ k,

S1
def
= |{r ∈ Rm

k′ | affine(r) ⊆ s}| =
���Rk

k′
��� def

= S2

Every subspace in Sm
k is contained in the same number of

subspaces in Sm
k′ for k′ ≥ k,

Proposition 4.4 (uniformity upwards). For every di-
mensions k ≤ k′ ≤ m, there is a number T = T (m, k, k′),
such that for every subspace s ∈ Sm

k ,���s′ ∈ Sm
k′
�� s′ ⊇ s

	�� = T

A useful representation of affine subspaces is given in the
following proposition,

Proposition 4.5 (linear equations). Let
s = affine(~z; ~y1, . . . , ~yk) ∈ Sm

k , let ~α1, . . . , ~αm−k ∈ Hm be
(m− k) linearly independent vectors orthogonal to ~y1, . . . , ~yk ∈
Hm. Then,

s = {~x ∈ Fm | ∀1 ≤ j ≤ m− k, (~x, ~αj) = (~z, ~αj)}

Using this dual representation, we can easily conclude clo-
sure under intersection,

Proposition 4.6 (closure under intersection). If
s1 ∈ Sm

k(1) and s2 ∈ Sm
k(2) where s1∩s2 6= φ, then there exists

k(3) such that s1 ∩ s2 ∈ Sm
k(3) .

5. AFFINE SUBSPACES WITH DIRECTIONS
OVER A SUBFIELD SAMPLE WELL

We say that an affine subspace s in Fm samples a set A ⊆
Fm well if the fraction of points from A contained in it, i.e.,
|s∩A|
|s| , is approximately |A|

|Fm| . We say that a distribution D
on affine subspaces in Fm samples well, if no matter how one
fixes a large enough subset A ⊆ Fm, a random subspace s ∼
D samples A well with high probability. In this section we
use Fourier analysis to show that the distributions induced
by our testers sample well.

5.1 Sampling Lemma
In this subsection we prove our basic lemma via Fourier

analysis. Given z, y ∈ Fm and a subset A ⊆ Fm, define
Xz,y to be the number of c ∈ F satisfying z + c · y ∈ A.
Clearly, the expectation of Xz,y when picking independently

at random z ∈ Fm and y ∈ Hm is |F| · |A|
|Fm| . We bound the

variance of Xz,y, implying that it is concentrated around its
expectation.

Lemma 5.1. For any set A ⊆ Fm of density µ = |A|/|Fm|,

Var
z∈Fm,y∈Hm

[Xz,y] ≤ |F|2 µ

|H|

5.2 Affine Subspaces Sample Well
We can now bound the deviation of the hitting rate of an

affine subspace s ∈ Sm
k from its expected value,

Corollary 5.2 (sampling). Fix dimensions k and m,
1 ≤ k ≤ m. Fix A ⊆ Fm of density µ = |A| / |Fm|. Then,
for any ε > 0,

Pr
s∈Sm

k

����� |s ∩A|
|s| − µ

���� ≥ ε

�
≤ µ

ε2 |H|

5.3 Linear Subspaces Sample Well
We can similarly bound the deviation of the hitting rate

of a linear subspace from its expected value,

Corollary 5.3 (sampling). Fix dimensions k and m,
1 ≤ k < m. Fix a set A ⊆ Fm of density µ = |A|/|Fm|. Pick
uniformly ~z ∈ Fm, ~y1, . . . , ~yk ∈ Hm, such that ~z, ~y1, . . . , ~yk

are linearly independent. Denote s = affine(~0; ~z, ~y1, . . . , ~yk).
Then, for any ε > 0,

Pr
s

����� |s ∩A|
|s| − µ

���� ≥ ε

�
≤ 1

ε2
·
�

µ

|H| +
1

|F|
�



6. CONSOLIDATION
In this section we show that weak low degree testing claims

imply strong low degree testing claims. Specifically, we are
interested in the following (for exact definitions, see the next
subsections):

1. decoding/list decoding : by decoding we refer to finding
a single polynomial Q : Fm → F agreeing with the ora-
cle on many of the points. By list-decoding we refer to
finding a short list of polynomials Q1, . . . , Qt : Fm → F
explaining almost all the acceptance probability of a
tester.

2. consistency : we are able to construct polynomials Q :
Fm → F agreeing with the oracle on some fraction of
the points, and wish to find polynomials agreeing with
the oracle on a larger fraction of the points.

3. degree: we are able to construct polynomials Q : Fm →
F of degree at most d′ ≥ d, and wish to find polyno-
mials of degree at most d.

We call such arguments consolidating arguments. They
are standard in the low degree testing literature (see, e.g.,
[3, 16, 9]), however, they require some adaptation to our
new setting. In the following subsections we provide the
statements and the proofs of the exact claims we need.

6.1 From Decoding to List-Decoding
If we have a way to decode, then we can list-decode by

repeatedly applying decoding. In our setting, it is easy to
force the decoding process to output a polynomial that dif-
fers from existing polynomials, by modifying the oracle.

Lemma 6.1 (decoding ⇒ list-decoding). Assume that
|F| ≥ 4. Fix a distribution D over affine subspaces of dimen-
sion k > 0 in Fm. Fix a function f : R → R, and a degree
d′ such that d ≤ d′ ≤ |F| − 3. If decoding:
for every success probability 0 < γ ≤ 1 and oracle A, (much
consistency)

E
s∼D

�
Pr
~x∈s

[A(s)(~x) = A(~x)]

�
≥ γ

implies
(relatively-low degree polynomial slightly agrees with A)
There exists a polynomial Q : Fm → F, with deg Q ≤ d′,
such that

Pr
~x∈Fm

[Q(~x) = A(~x)] ≥ f(γ)

Then list-decoding:
For every oracle A, (almost all consistency is explained by
a list),

Fix ε0
def
=
q

d′
|F| . For every ε0 < δ < 1, such that δ′

def
=

f (δ − ε0) − ε0 ≥ 2ε0, there exists a list of t ≤ 2/δ′ polyno-
mials Q1, . . . , Qt : Fm → F with deg Qi ≤ d′, such that

E
s∼D

�
Pr
~x∈s

[A(s)(~x) 6= A(~x) ∨ ∃i (Qi ≡ A)(s)]

�
≥ 1− δ

We can slightly enhance lemma 6.1 by requiring each
member Qi of the list to agree with the oracle A on more
than ε/t weight of the subspaces s ∼ D. This can be done
at the expense of lowering the weight of subspaces s ∼ D
explained by the list by another ε. In other words, instead of
the above list decoding condition, we can have the following
two conditions:

1. For every i ∈ [t], Prs∼D [(Qi ≡ A)(s)] > ε
t

2. Es∼D [Pr~x∈s [A(s)(~x) 6= A(~x) ∨ ∃i (Qi ≡ A)(s)]] ≥ 1−
δ − ε

6.2 Consistency Consolidation
In this subsection, we prove a lemma allowing us to de-

duce that a significant consistency γ together with a list-
decoding for it imply that at least one of the polynomials in
the list agrees with the oracle on almost γ fraction of the
points. The lemma requires that the distribution over affine
subspaces would sample well (see section 5). Together with
lemma 6.1 that transforms decoding into list decoding, this
lemma allows us to improve the consistency we manage to
recover.

We phrase a rather general lemma addressing distribu-

tional oracles, instead of oracles. We say that eA is a dis-
tributional oracle, if it assigns each affine subspace s a dis-
tribution over functions f : s → F (not necessarily a single
polynomial of degree at most d over s). Our semantic even
permits the distribution to produce a null function with
some probability. We interpret a null function as one that
does not satisfy any property of the form “the function eval-
uates to...” (and hence satisfies every property of the form
“the function does not evaluate to...”).

Lemma 6.2 (from list-decoding to decoding). Fix
a distribution D over affine subspaces that samples well,
i.e., there exists ∆ : [0, 1] → [0, 1], such that for every set
A ⊆ Fm, for every 0 < ε < 1,

Pr
s∼D

����� |s ∩A|
|s| − |A|

|Fm|

���� ≥ ε

�
≤ ∆(ε)

Let A denote an oracle, and let eA denote a distributional
oracle. Assume

1. (the oracles are significantly consistent)

EeA
�

E
s∼D

�
Pr
~x∈s

h eA(s)(~x) = A(~x)
i��

≥ γ

2. (most consistency is explained by a list)
There exist t functions f1, . . . , ft : Fm → F, such that,

EeA
�

E
s∼D

�
Pr
~x∈s

h eA(s)(~x) 6= A(~x) ∨ ∃i (fi ≡ eA)(s)
i��

≥ 1−δ

Then, for any 0 < ε < 1 such that ε ≥ t ·∆(ε), there exists
1 ≤ i ≤ t, such that

Pr
~x∈Fm

[fi(~x) = A(~x)] ≥ γ − δ − 2ε

6.3 Degree Consolidation
Degree consolidation shows that if one reconstructs a poly-

nomial of not too large degree that agrees with the oracle
on many of our subspaces then the polynomial’s true degree
is, in fact, low. The reason is that the polynomial’s degree
does not decrease much when restricted to almost all our
subspaces.

First we prove a lemma allowing us to deduce degree d if
one of the directions of our subspaces is distributed over Fm

(rather than Hm). This is used only in the analysis of the
Randomness-Efficient Subspace vs. Point tester.



Lemma 6.3 (degree d consolidation). Fix dimensions
k and m, 0 ≤ k < m. Fix an oracle A assigning polyno-
mials of degree at most d to all affine subspaces. Suppose
that a polynomial Q : Fm → F satisfies the following for
some 0 ≤ δ ≤ 1: deg Q ≤ δ |F|, and, when picking inde-
pendently at random ~z ∈ Fm and ~y1, . . . , ~yk ∈ Hm such that
~z, ~y1, . . . , ~yk are linearly independent,

Pr
~z,~y1,...,~yk

h
(Q ≡ A)(affine(~0; ~z, ~y1, . . . , ~yk))

i
> δ +

1

|F|
Then, deg Q ≤ d.

Next we prove a lemma allowing us to deduce degree md
(rather than d), even if we only observe affine subspaces
in Sm

k . This lemma will be used in the analysis of the
Randomness-Efficient Plane vs. Point tester.

Lemma 6.4 (degree md consolidation). Fix dimen-
sions k and m, 1 ≤ k ≤ m. Fix an oracle A assigning
polynomials of degree at most d to all affine subspaces. Sup-
pose that for some 0 ≤ δ ≤ 1, there exists a polynomial Q :
Fm → F, such that deg Q ≤ δ |F| and Prs∈Sm

k
[(Q ≡ A)(s)] >

δ + 1
|H| . Then, deg Q ≤ md.

7. CONSISTENCY GRAPH
Fix a dimension k ≥ 3. In this section we define and

analyze a graph that captures the consistency among hy-
perplanes in Fk, i.e., affine subspaces of dimension that is
smaller by 1 than k. Using the graph we prove a list decod-
ing lemma (lemma 7.4). This lemma is used in the analysis
of the Randomness-Efficient Plane vs. Point tester to go up
one dimension (see section 8). Lemma 7.4 is also the only
lemma in this section that is is used outside it.

The idea is a variation of the analysis of Raz and Safra
for the non-randomness-efficient setting [16]. Our crucial
observation is that we can essentially still apply their anal-
ysis when considering only directions with coordinates in a
subfield H ⊆ F, instead of the entire field F.
7.1 Graph Construction

Given an oracle A assigning affine subspaces polynomi-
als of degree at most d, define a simple undirected graph
GA = (V, EA) that captures the consistency among affine
subspaces in Sk

k−1 as follows. Let the vertices be all those

subspaces, V
def
= Sk

k−1. Let the edges indicate whether two
affine subspaces are assigned polynomials that are consistent
on the intersection of the subspaces,

EA
def
= {(s1, s2) | ∀~x ∈ s1 ∩ s2, A(s1)(~x) = A(s2)(~x)}

Note that every two subspaces in Sk
k−1 are either parallel

(i.e., identify or do not intersect) or intersect by an affine
subspace from Sk

k−2 (see closedness under intersection; propo-
sition 4.6).

7.2 Graph is Almost-Transitive
We first wish to establish that the graph is almost-transitive

in the sense that every two vertices that are not neighbors
do not have too many common neighbors (whereas, if the
graph had been transitive, they would not have had common
neighbors at all):

Lemma 7.1 (almost transitivity). If (s1, s2) /∈ EA,

Pr
s3∈V

[(s1, s3) ∈ EA ∧ (s3, s2) ∈ EA] ≤ 1

|H| +
d

|F|

7.3 Graph-Based List Decoding
The almost-transitivity of the graph GA can be used to

prove that, other than relatively few edges, the graph is truly
transitive, i.e., composed of disjoint cliques. Moreover, these
cliques are relatively large. This was shown by Raz and
Safra [16],

Lemma 7.2 (graph partition). Fix ε = 1
|H|+

d
|F| . There

exists a partition of the vertices of GA into cliques, V =Ut
i=1 Vi, such that

1. (all non-trivial cliques are large) For every 1 ≤ i ≤ t,
either |Vi| = 1, or |Vi| > 2

√
ε |V |.

2. (almost all edges are within cliques)

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i s1, s2 ∈ Vi] ≥ 1− 5
√

ε

A large clique in GA corresponds to a single relatively-low
degree polynomial agreeing with the oracle A on all affine
subspaces associated with the vertices in the clique,

Lemma 7.3 (from large clique to polynomial). For

every large clique U ⊆ V , |U | >
�

2d
|F| + 1

|H|
�
· |V |, there ex-

ists a polynomial Q : Fk → F with deg Q ≤ 2d, such that for
every s ∈ U , (Q ≡ A)(s).

The partition of GA into cliques yields list decoding,

Lemma 7.4 (hyperplane vs. hyperplane). Assume A
assigns polynomials of degree at most d to affine subspaces.

For any δ ≥ 8
q

d
|F| + 1

|H| there exists a list of polynomials

Q1, . . . , Qt : Fk → F, t ≤ 4
δ
, with deg Qi ≤ 2d, such that

Pr
s1,s2∈V

[(s1, s2) /∈ EA ∨ ∃i, (Qi ≡ A)(s1) ∧ (Qi ≡ A)(s2)] > 1−δ

Note that the lemma is meaningful only when the density
of the graph, |EA|/|V |2, is large enough with respect to
δ, otherwise, the list might be empty. This corresponds
to the fact that the oracle must assign the affine subspaces
somewhat consistent polynomials if we wish to (list) decode.

8. GOING UP ONE DIMENSION
Fix dimension k ≥ 3. Let A be an oracle assigning polyno-

mials of degree at most d to affine subspaces. In this section
we prove that if there is γ consistency between affine sub-
spaces of dimension (k − 1) in Fk and points within them,
then there exists a polynomial Q : Fk → F of degree at most
2d that agrees with the oracle on almost γ of the points.
This is done in several steps:

1. We use an argument of counting in several manners to
transform our setting to one that resembles that of the
consistency graph of section 7.

2. We use the analysis of the consistency graph to prove
the claim we want but with not as good consistency
parameter.

3. We fix the consistency parameter via the consistency
consolidation of section 6.

The final result of this section is given in lemma 8.3. This
is also the only lemma in this section used outside it. Note
that the degree parameter grows from d to 2d, and we indeed
need to take care of that when we use this lemma.



8.1 From Hyperplane vs. Point to Hyperplane
vs. Hyperplane

We start by showing that γ consistency between hyper-
planes and points within them implies that for an average
pair (s1, s2) of intersecting hyperplanes, A(s1) and A(s2)
identify (with each other and with A) on at least γ2 of the
points in the intersection of s1 and s2.

The proof uses repeatedly the trick of counting in several
manners, which is made possible due to uniformity consid-
erations (see section 4).

For an affine subspace a ∈ Sk
k−2, denote the set of hyper-

plane pairs that intersect on a by

Sa
def
=
n

(s1, s2)
��� s1, s2 ∈ Sk

k−1, s1 ∩ s2 = a
o

Lemma 8.1 (counting in several manners). If for or-
acle A, holds Es∈Sk

k−1
[Pr~x∈s [A(s)(~x) = A(~x)]] ≥ γ, then,

E
a∈Sk

k−2

�
E

(s1,s2)∈Sa

�
Pr
~x∈a

[A(s1)(~x) = A(~x) = A(s2)(~x)]

��
≥ γ2− 1

|H|

8.2 Hyperplane vs. Point Lemma
Next, we show that considerable consistency between (k−

1)-dimensional affine subspaces and points implies a signifi-
cant correspondence of the values assigned to points with a
relatively low degree polynomial over Fk. The heart of the
proof is the analysis of the consistency graph (lemma 7.4).

Lemma 8.2 (hyperplane vs. point). Assume A as-
signs polynomials of degree at most d to affine subspaces.

Fix δ
def
= 16max

nq
d
|F| , 4
q

1
|H|
o
. Assume that

E
s∈Sk

k−1

�
Pr
~x∈s

[A(s)(~x) = A(~x)]

�
≥ γ

Then there exists a polynomial Q : Fk → F, with deg Q ≤ 2d,
such that

Pr
~x∈Fk

[Q(~x) = A(~x)] ≥ γ2 − 3δ

8.3 Consolidating
We can apply consistency consolidation to improve the

result of the last subsection. The following summarizes what
we establish in this section:

Lemma 8.3 (consistency consolidated). Denote θ0
def
=

24 ·
�

8
q

1
|H| + 4

q
d
|F|
�
. Fix k ≥ 3. Fix an oracle A assigning

polynomials of degree at most d to all affine subspaces. As-
sume that

E
s∈Sk

k−1

�
Pr
~x∈s

[A(s)(~x) = A(~x)]

�
≥ γ

Then there exists a polynomial Q : Fk → F, with deg Q ≤ 2d,
such that

Pr
~x∈Fk

[Q(~x) = A(~x)] ≥ γ − 2θ0

9. PROVING OUR MAIN THEOREMS
We prove Theorem 1 by induction using lemma 8.3 and

the consolidation machinery we developed in section 6. We
then conclude Theorem 2. Further details can be found in
the full version of this paper [15].
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