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1 Introduction

The PCP (i.e., Probabilistically Checkable Proofs) Theorem [8, 7, 22, 5, 4] states that any
mathematical proof can be converted to a format that can be checked by a verifier making only
a constant number of queries to the proof. The verifier picks the queries in a randomized way
and might err with low probability.

Despite three highly successful decades of research on PCP, we’re far from having an “ulti-
mate” PCP theorem in which the randomness complexity of the verifier, the number of queries
the verifier makes, the alphabet size of the proof, and the error probability of the verifier are
all, simultaneously, as low as they could be. The lack of such a PCP theorem prevents us
from obtaining optimal hardness of approximation results for problems like Closest Vector
Problem, Directed Sparsest Cut and Constraint Satisfaction Problem over large
alphabet.

The “Sliding Scale Conjecture” and related conjectures capture our beliefs about the PCP
theorems we should aspire to, and they are the focus of this column. There are tradeoffs between
the different parameters, and the conjectures ask for optimal tradeoffs. The name “Sliding Scale
Conjecture” was coined by Shafi Goldwasser in talks she gave on her joint work with Bellare,
Lund and Russell [11]. Goldwasser focused on the tradeoff between the alphabet size and the
error probability – as the alphabet becomes larger (the “window” into the proof slides up), the
error probability can be made lower. Personally, I’d like to think of the error probability ε as
doing the “sliding”, and have the rest of the parameters adjusted accordingly. In this column
I’ll describe the conjectures, their applications and where current research stands with respect
to them.

2 The Conjectures

Without further ado, let us state the main conjecture:

Conjecture 2.1 (Sliding Scale Conjecture [11]). There exists ε0 = ε0(n) = 1/ poly(n), so for
any ε ≥ ε0, there exists Σ of size poly(1/ε), such that every NP language L has a PCP verifier
that on input x of size n uses r = O(log n) random bits to make q = O(1) queries to a proof π
over alphabet Σ, and:

• Completeness: If x ∈ L, then there exists π, such that the verifier always accepts.
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• Soundness: If x /∈ L, then for any π, the probability that the verifier accepts is at most ε.

To clarify the parameters: As usual in PCP, the focus is on verifiers that use only r = O(log n)
random bits where n is the size of the input x. The reason is that it implies a standard NP verifier
with a poly(n)-sized proof by enumerating all possible settings of the random bits. The lowest
the error probability ε can be is exponentially small in the randomness r, which is polynomially
small in n. The number of queries q should be a universal constant, independent of the error
ε, preferably the minimum 2 queries. It is easy to amplify existing PCP Theorems to achieve
error ε using Θ(log(1/ε)) queries, but then the number of queries is not a universal constant.
the alphabet size must be at least polynomially large in 1/ε, since a random assignment satisfies
the verifier with probability 1/ |Σ|q.

The paper [11] came out in 1993, shortly after the PCP Theorem was first proved. In the
years since, researchers perfected techniques for proving optimal inapproximability results based
on the PCP Theorem [10, 24]. PCP of a certain type (“projection PCP”) is the basis of those
optimal results. Projection PCPs have two queries, and the answer to the first query uniquely
determines a satisfying answer to the second query, but not vice versa1. The optimization
problem associated with such PCPs is called Label-Cover:

Definition 1 (Label-Cover). The input is a bipartite graph G = (X,Y,E), alphabets ΣX , ΣY ,
functions {fe : ΣX → ΣY }e∈E and sets {Vx ⊆ ΣX}x∈X . We say that assignments A : X → ΣX ,
B : Y → ΣY satisfy an edge e = (x, y) ∈ E if A(x) ∈ Vx and fe(A(x)) = B(y). The goal is to
find assignments to the vertices that satisfy as many edges as possible.

The Projection Games Conjecture is that the Sliding Scale Conjecture holds even for projec-
tion PCP. In other words, Label-Cover is NP-hard to approximate as follows:

Conjecture 2.2 (Projection Games Conjecture, [31]). There exists ε0 = ε0(n) = 1/poly n, so
for any ε ≥ ε0, there are ΣX ,ΣY of size poly(1/ε), such that it is NP-hard given Label-Cover
on inputs of size n with alphabets ΣX ,ΣY , to distinguish whether all edges can be satisfied of at
most ε fraction can be satisfied.

One may also ask for a version of the Projection Games Conjecture where the reduction from
Sat is very efficient:

Conjecture 2.3 (Projection Games Conjecture, almost linear size [31]). For any ε = ε(n) > 0,
Sat on input ϕ of size n can be reduced to Label-Cover on inputs of size n1+o(1) poly(1/ε)
with alphabets ΣX ,ΣY of size poly(1/ε), such that: If ϕ is satisfiable, then there exists an
assignment that satisfies all edges in Label-Cover, while if ϕ is not satisfiable, then at most
ε fraction of the edges can be satisfied.

It is believed that Sat on input of size n requires exponential time 2Ω(n) (“The Exponential
Time Hypothesis” [26]). Under this assumption, Conjecture 2.3 shows that approximating
Label-Cover up to factor ε requires nearly exponential time.

In hardness of approximation reductions, one typically starts with a Label-Cover instance
and then encodes the alphabet symbols with some code of special structure. To use ε =
1/poly(n) in such reductions one might want to use the Hadamard code, which requires the
projections to correspond to linear functions. Since there is an efficient algorithm that solves a
fully satisfiable system of linear equations, in this case there must be completeness error too:

1In unique PCP, the answer to each one of the two queries uniquely determines a satisfying answer to the
other query. This is a more restricted PCP, whose existence with parameters analogous to what is known for
projection PCP is only conjectured [28].
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Conjecture 2.4 (Linear Projection Games Conjecture, [31]). There exist ε0 = ε0(n) = 1/ poly n
and δ0 = δ0(n) = 1/poly n, so for any ε ≥ ε0 and δ ≥ δ0, there are ΣX ,ΣY that are vector
spaces of size that depends on 1/ε, 1/δ, such that it is NP-hard given Label-Cover on inputs
of size n with alphabets ΣX ,ΣY and {Vx}x, {fe}e∈E that are linear, to distinguish whether 1− δ
fraction of the edges can be satisfied or at most ε fraction can be satisfied.

For some applications it is useful to have certain structural properties on the graph G un-
derlying Label-Cover. The structural properties include: regularity, low degree and pseudo-
random structure:

Conjecture 2.5 (Projection Games Conjecture, structured graph [31]). There exists ε0 =
ε0(n) = 1/ poly n, so for any ε ≥ ε0, there are ΣX ,ΣY of size poly(1/ε), such that it is NP-
hard given Label-Cover on inputs of size n with alphabets ΣX ,ΣY and a bi-regular bipartite
expander graph G whose degrees are at most poly(1/ε), to distinguish whether all edges can be
satisfied or at most ε fraction can be satisfied.

We remark that there are transformations that convert a general G to bi-regular with low
degree [34], however the transformation that gets the degree of the X vertices poly(1/ε) makes
the size of ΣX exponential in poly(1/ε) (In contrast, the degree of the Y vertices can be made
poly(1/ε) without changes to the alphabet).

3 Known PCP Theorems

The known PCP constructions are detailed in Table 1 below with citations. To summarize the
table, the lowest error known for Label-Cover is 2−Ω(

√
logN) where N is the size of the input to

Label-Cover, but this requires a quasi-polynomial reduction from Sat (This follows from the
second row of the table with ε = 1/n and N = nlogn). Under the Exponential Time Hypothesis,

this only gives a 22Ω(
√

logN)
time lower bound for Label-Cover. The lowest error known with

near-exponential time lower bound 2N
1−o(1)

for Label-Cover is poly-logarithmically small in
N (for some poly-logarithm). For more than two queries, researchers achieved lower error with
near-exponential time lower bounds. The larger the number of queries is – the lower the error
researchers achieved. With poly log logN queries researchers achieved polynomially small error
1/NΩ(1).

In Table 1, size is the size of the instance when reducing from Sat on inputs of size n. proj
means projection. In the projection games constructions in the table the underlying graph can
be made an expander (this is implicit in the constructions). For constructions where only a

small error probability is mentioned (e.g., 2−(logn)β ), one can obtain constructions for every ε
larger than that error by a family of techniques called “composition”. Those techniques may
increase the number of queries and the size, and hence we only state the result for the smallest
error probability (see Subsection 6.2 for more details about composition).

4 Approximation Algorithms

What evidence do we have that polynomially small error for PCP is achievable? The dual ques-
tion is whether there are approximation algorithms for Constraint Satisfaction Problem
or (the easier) Label Cover that approximate to within factors better than polynomial.

Label Cover is provably hard up to polynomial factors for semidefinite programming based
algorithms, both basic ones and strong ones based on a hierarchy of semidefinite programs [14].
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Queries Alphabet Error Size Comments Ref

2 exp(poly(1
ε )) ε n1+o(1) poly(1

ε ) proj, deg poly(1
ε ) [34]

2 poly(1/ε) ε nO(log(1/ε)) proj, deg poly(1
ε ) [4] + [37]

2 exp(1/ε) ε poly(n, 1/ε) proj, deg poly(1
ε ) [34] + [21]

3 poly(n) ∃β > 0, 2−(logn)β poly(n) [6, 38]

7 no(1) ∃β > 0, 2−(logn)β n1+o(1) [33]

poly(1/β) O(1/ε) ε ≥ 2−(logn)1−β
poly(n) [17]

poly log log n no(1) 1/n poly(n) [19]

Table 1: Known PCP constructions.

So, one could say that the Projection Games Conjecture is true for semidefinite programming
algorithms. What about other algorithms?

The best known efficient algorithms for Label Cover are combinatorial. The best known
worst-case algorithm gives an approximation ratio roughly 1/N0.233 [14]. When the Label
Cover graph is picked at random, but the constraints are worst-case, there is an efficient
algorithm that approximates Label Cover to within 1/N3−2

√
2 ≈ 1/N0.17 [14]. This is the

best an algorithmic technique called the log density method could give, and it might be best
possible for Label-Cover (See discussion in [14]).

5 Implications

Next we list some of the implications of the conjectures:

1. Constraint Satisfaction Problem (over large alphabet): The input consists of m
tests over n variables, where each test depends on q variables, and the variables assume
values from an alphabet Σ. The task is to assign values from Σ to the variables in a way
that satisfies as many tests as possible. The Sliding Scale Conjecture implies hardness up
to polynomial factors for polynomial sized Σ.

2. 3Lin: The input consists of m linear equations over n Boolean variables, where each
equation depends on three variables. The task is to assign the variables so as many
equations as possible are satisfied. A random assignment satisfies half of the equations
in expectation. The linear Projection Games Conjecture implies hardness of satisfying
1/2 + 1/ poly n fraction of the equations [31].

3. Directed Multi Cut: The input is an n-vertex directed graph along with source-sink
pairs, and the goal is to find the minimum cardinality subset of edges whose removal sepa-
rates all source-sink pairs. The Sliding Scale Conjecture implies hardness up to polynomial
factors [15].

4. Directed Sparsest Cut: The input is an n-vertex directed graph along with source-
sink pairs, and the goal is to find a subset of edges to delete so as to minimize the ratio of
the number of deleted edges to the number of source-sink pairs that are separated by this
deletion. The Sliding Scale Conjecture implies hardness up to polynomial factors [15].

5. Closest Vector Problem: The input is a basis b1, . . . , bn ∈ Rn and a point x ∈ Rn,
and the goal is to find a point in the lattice {

∑n
i=1 αibi |α1, . . . , αn ∈ Z} that is close
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to x in `2 norm. The Projection Games Conjecture implies hardness up to polynomial
factors [3, 27].

6. Nearest Codeword Problem: The input is an n × k matrix A over a finite field F
and a word w ∈ Fn. The goal is to find the codeword Av for v ∈ Fk that is closest
in Hamming distance to w. The Projection Games Conjecture implies hardness up to
polynomial factors [35].

7. Shortest Vector Problem: The input is a basis b1, . . . , bn ∈ Rn, and the goal is to
find a point in the lattice {

∑n
i=1 αibi |α1, . . . , αn ∈ Z} that is as small as possible in `2

norm. The Projection Games Conjecture implies hardness up to polynomial factors [35].

8. Learning Halfspace Problem: The input is a set of linear inequalities in n variables,
and the goal is to find an assignment to the variables that satisfies as many inequalities as
possible. The Projection Games Conjecture implies hardness up to polynomial factors [35].

6 Approaches

In this section we survey natural approaches to proving or disproving Sliding Scale Conjectures.

6.1 Error Reduction

One could prove the Sliding Scale Conjecture by decreasing the error of existing PCP verifiers.
Parallel repetition is a natural method for decreasing the error without increasing the number of
queries. Suppose that we start with a PCP in projection form2. The proof in the repeated PCP
consists of all k-tuples of symbols of the original proof. The repeated verifier picks independently
k randomness strings and performs the k tests by querying two k-tuples. There is vast literature
ultimately showing that parallel repetition decreases the error from ε to roughly εΩ(k) [23, 37,
25, 36, 21, 30, 13]. However, the size is raised to a power k, and hence one typically uses
parallel repetition only for constant k. If one could save in randomness and perform error
reduction to polynomially small error while keeping the size polynomial, it would have proved
the Projection Games Conjecture. Unfortunately, there are impossibility results for randomness-
efficient parallel repetition: when the initial PCP has low degree [23] and for black box analyses
of parallel repetition [32]. It is possible that error can be decreased in a randomness-efficient
way for specially structured verifiers. An approach along these lines was suggested in [29].

6.2 Alphabet reduction

If we could reduce the alphabet size of existing PCPs (e.g., [34]) without increasing other param-
eters (size and number of queries) substantially, we could prove the Sliding Scale Conjecture.
In error correcting codes, one can decrease alphabet by an idea called concatenation: replace
each alphabet symbol with an encoding of it over a smaller alphabet. This so-called “inner”
encoding can be less efficient than the original, so-called “outer” code, since it is applied on
shorter strings. While being much more involved, there is an analogous operations on PCPs,
called composition [5], which is key to almost all PCP constructions. Unfortunately, existing

2Parallel repetition of PCPs in projection form is well understood and useful for hardness of approximation
since parallel repetition preserves projection form. Giving similarly strong analyses of parallel repetition of
verifiers with more than two queries is an interesting open problem.
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composition methods either increase the number of queries [5] or work in the regime of error
close to 1 [12, 20] or use alphabet that – while independent of n – is exponentially large in
1/ε [34, 18].

6.3 Sub-sampling

Sub-sampling is the idea of decreasing the randomness by sampling a small subset of the proof
symbols and only performing the tests that query them. This idea works for dense PCPs
(where verifier tests involve a large fraction of all q-tuples of proof symbols), but dense PCPs
have efficient algorithms [2, 9, 1].

6.4 Linear size PCP

One can attempt to prove a weaker version of the Projection Games Conjecture, which shows
a mildly sub-exponential reduction from Sat to Label Cover, rather than polynomial time
reduction (this in turn rules out polynomial time algorithms for Label Cover under the
assumption that Sat requires exponential time). The weaker version would follow from PCP
verifiers that achieve constant error using only r = log n+O(1) random bits, a notorious open
problem in PCP [16].

6.5 Locally Decode/Reject Codes

It suffices to construct codes called locally decode or reject codes [34] with polynomially small
error. Given a list of k-tuples of indices in {1, . . . , n}, such codes encode words w ∈ {0, 1}n
in a way that enables the decoding of k-tuples of bits from the original word. The decoder is
allowed to make O(1) queries to the purported codeword, and should either decode random k
bits from the list or reject. The decoder always returns correct k bits for legal codewords. There
is probability at most ε (over the choice of k bits and over the randomness of the decoder) that
the decoder does not reject yet returns k bits that do not correspond to a list decoding. To
prove the Sliding Scale Conjecture, one needs to accommodate k = log n.

6.6 Approximation Algorithms

If one wishes to disprove the Sliding Scale Conjecture, perhaps a good starting point would be
to disprove the more ambitious Projection Games Conjecture, or – yet easier – approximate
Densest k-Subgraph to within no(1). In Densest k-Subgraph the input is an undirected
graph of size n and the goal is to find a dense sub-graph of size k. The connection between
Densest k-Subgraph and Label Cover is as follows: Consider the label extended graph of
a Label Cover instance, that is, the graph where each vertex x ∈ X is replaced with vertices
(x, a) for a ∈ ΣX corresponding to the different assignments to x, and each vertex y ∈ Y is
replaced with vertices (y, b) for b ∈ ΣY corresponding to different assignments to y. Connect
(x, a) and (y, b) if e = (x, y) ∈ E and fe(a) = b. Set k = |X ∪ Y |. Label Cover focuses on
the density of sets that take at most one vertex (v, ·) for every v ∈ X ∪ Y .

7 More Open Problems

We mentioned a large number of open problems throughout the column. Several additional
ones are:
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• Prove more implications of the conjectures, e.g., to Clique and to understanding ap-
proximation near the threshold, generalizing the result for 3Lin in Section 5 to other
problems.

• Which hardness of approximation results are equivalent to (rather than just implied by)
the conjectures? (Among the implications listed in Section 5 we only know equivalence
for Constraint Satisfaction Problem with polynomial-sized alphabet).

• Design approximation algorithms for linear projection games.
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