CS 378 – Big Data Programming

Lecture 1

Introduction
Class Logistics

• Class meets MW, 9:30 AM – 11:00 AM

• Office Hours – GDC 4.706
 – MW 11:00 – 12:00 AM
 – By appointment
 – Email: dfranke@cs.utexas.edu
 – Web page: cs.utexas.edu/~dfranke/courses/2015spring/cs378-BDP.htm

• TA: Swadhin Pradhan
 – Office hours:
Course Content

• Programming in Hadoop (map-reduce) and Spark

• Use ElasticMapReduce (EMR) on Amazon Web Services (AWS) initially
 – Hope to use the Hadoop cluster at TACC (if available)
 – Local install of Hadoop

• Looking into cloud based Spark cluster
 – From DataBricks
 – TACC is another possibility
 – Local install can also be used
Textbooks

• MapReduce Design Patterns
 – Main content for Hadoop assignments

• Hadoop The Definitive Guide – 3RD Edition
 – Recommended for your understanding, not required

• Learning Spark (early release)
 – Main content for Spark assignments
Lectures

• PDF of lecture notes accessible via syllabus
 – For your note taking, review, or whatever

• These notes are my outline for each class
Assignments

• Assignments will be programming assignments
 – All work can be done using Java
 – Scala might be an option

• IDE for developing code recommended
 – Eclipse, IntelliJ IDE (community edition) are free
 – Use maven to build “uber” JAR to upload to the cloud
 – I’ll provide the pom.xml file used by maven
Assignments

• I’ll review a solution in class on the due date
 – Work submitted after the start of class considered late
 – 25% penalty for late submission
 – Can be submitted until the next assignment is due
 – After that deadline, no credit is given
 • Will consider these in determining final grade

• I encourage you to keep pace with the assignments
 – Most assignments will build on previous work
• Questions?
Learning from Data

• What can we do when the data gets big?
 – Too big for the CPU memory of any single machine
 – Larger than the disk storage of a single machine

• Recent data point:
 – Facebook has ~800 petabyte data cluster (Hadoop)
 – 1 petabyte = 10^{15} bytes

• Big data is spread across a network of machines
Learning from Big Data

• Need to bring distributed storage and distributed processing to bear to handle big data

• Issues:
 – Distributing computation across many machines
 – Maximizing performance
 • Minimize I/O to disk, minimize transfers across the network
 – Combining the results of distributed computation
 – Recovering from failures
Managing Big Data

• We’ll look at two popular tools/systems

 • One well established – Hadoop

 • One up and coming – Spark

• Basic concepts of each
• How they address the aforementioned issues
• How to solve various problems with these systems
Managing Big Data

• When writing a program with these tools ...
 – You don’t know the size of the data
 – You don’t know the extent of the parallelism

• Both try to collocate the computation with the data
 – Parallelize the I/O
 – Make the I/O local (versus across network)

• Data is often unstructured (vs. relational model)
Big Data vs. Relational

• RDBMS normalization
 – Goal is to remove redundancy and retain/insure integrity

• Big data apps want reads to be local
 – Send the code to the data, as it much smaller (Jim Gray)
 – Normalization makes read non-local

• Processing examines one input record at a time
 – Minimal state in programs – it’s in the data
Big Data Tools

• This all sounds great. What are the issues?
 – Coordinating the distributed computation
 – Handling partial failures
 – Combining the results of distributed computation

• Tools offer a programming model that abstracts
 – Disk read and write
 – Parallelization (computation and I/O)
 – Combining data (keys and values)
MapReduce Design Patterns

- Summarization
- Filtering
- Data Organization
 - Partitioning/binning, sorting, shuffle
- Joins
 - Merging data sets
- Meta-patterns
 - Optimizing map-reduce chains (data pipelines)
Resources for Hadoop

• *Hadoop: The Definitive Guide, 3rd Edition*, by Tom White
 – O’Reilly Media

• *MapReduce Design Patterns*, by Donald Miner and Adam Shook
 – O’Reilly Media

• Several vendors provide Hadoop distributions

• Amazon Web Services – ElasticMapReduce
Resources for Spark

• *Learning Spark*, (early release) by Holden Karau, Andy Konwinsky, Patrick Wendell, Matei Zaharia
 – O’Reilly Media

 – Can download a version that runs on your local machine

• Cloud services
 – Spark on AWS
 – DataBricks offers a cloud service
 – Others will join the party