Mathematical Background

Asymptotic Notation

- For functions $f, g: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$, we say $f(n)=O(g(n))$ if $\left(\exists C, n_{0} \in \mathbb{R}\right)\left(\forall n \geq n_{0}\right) f(n) \leq C g(n)$.
- If the range of f and g are the positive reals, then the n_{0} isn't necessary: $f(n)=O(g(n))$ iff $(\exists C \in \mathbb{R})(\forall n \in \mathbb{R}) f(n) \leq C g(n)$.
- $f(n)=\Omega(g(n))$ means $g(n)=O(f(n))$, or in other words $\left(\exists c, n_{0} \in \mathbb{R}\right)\left(\forall n \geq n_{0}\right) f(n) \geq c g(n)$.
- $f(n)=o(g(n))$ means $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
- $f(n)=\omega(g(n))$ means $g(n)=o(f(n))$, i.e., $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$.

Logarithms

- $\log _{b} r=t$ means $b^{t}=r$.
- $\log _{b}(r s)=\log _{b} r+\log _{b} s$.
- $\log _{b}\left(r^{k}\right)=k \log _{b} r$.
-

$$
\log _{b} r=\frac{\log _{a} r}{\log _{a} b}
$$

Binomial coefficients

- The binomial coefficient $\binom{n}{k}$ equals the number of subsets of $\{1,2, \ldots, n\}$ that have size k.
\bullet

$$
\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k!}
$$

\bullet

$$
\binom{n}{k} \leq \frac{n^{k}}{k!} \leq\left(\frac{n e}{k}\right)^{k}
$$

- For large k the following bound is better:

$$
\binom{n}{k} \leq \sum_{i=0}^{k}\binom{n}{i} \leq 2^{H(k / n) n}
$$

Here $H(p)=p \log _{2}(1 / p)+(1-p) \log _{2}(1-p)$ denotes the binary entropy function.

Probability

- Probability and events:

1. A probability distribution on a finite set S is an assignment of probabilities $\operatorname{Pr}[x]$ to each element $x \in S$, where $\sum_{x \in S} \operatorname{Pr}[x]=1$. The uniform distribution is the probability distribution where $\operatorname{Pr}[x]=1 /|S|$ for all $x \in S$.
2. An event T is a subset of S. We have $\operatorname{Pr}[T]=\sum_{x \in T} \operatorname{Pr}[x]$, but often this probability can be computed more directly.
3. For any events A, B,

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B] .
$$

4. Union bound: for any events $A_{1}, A_{2}, \ldots A_{n}$,

$$
\operatorname{Pr}\left[A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right] \leq \operatorname{Pr}\left[A_{1}\right]+\operatorname{Pr}\left[A_{2}\right]+\ldots+\operatorname{Pr}\left[A_{n}\right] .
$$

5. For independent events $A_{1}, A_{2}, \ldots A_{n}$,

$$
\operatorname{Pr}\left[A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right]=\operatorname{Pr}\left[A_{1}\right] \cdot \operatorname{Pr}\left[A_{2}\right] \cdot \ldots \cdot \operatorname{Pr}\left[A_{n}\right]
$$

- Conditional probability:

1. The conditional probability of A given B, denoted $\operatorname{Pr}[A \mid B]$, is the probability that A occurs given that B occurs. It satisfies

$$
\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A \cap B] / \operatorname{Pr}[B] .
$$

2. Bayes' Law:

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A] \operatorname{Pr}[B \mid A]}{\operatorname{Pr}[B]} .
$$

- Random variables:

1. A random variable is a function on a probability space.
2. Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent if and only if for all x_{1}, \ldots, x_{n}, we have

$$
\operatorname{Pr}\left[\left(X_{1}=x_{1}\right) \wedge\left(X_{2}=x_{2}\right) \wedge \ldots \wedge\left(X_{n}=x_{n}\right)\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[X_{i}=x_{i}\right]
$$

3. If $X_{1}, \ldots, X_{n} \in\{0,1\}$ are independent, with $\operatorname{Pr}\left[X_{i}=1\right]=p$, then

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i}=k\right]=\binom{n}{k} p^{k}(1-p)^{n-k} .
$$

- Expectation:

1. The expectation of a random variable X with range S is

$$
\mathbb{E}[X]=\sum_{x \in S} x \cdot \operatorname{Pr}[X=x]
$$

2. Expectation is linear: for constants a, b and random variables X, Y we have

$$
\mathbb{E}[a X+b Y]=a \mathbb{E}[X]+b \mathbb{E}[Y]
$$

3. Expectation is multiplicative for independent random variables. That is, for independent X, Y, we have

$$
\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]
$$

- Variation distance

The variation distance, or statistical distance, between probability distributions P and Q defined on the same space S is

$$
\|P-Q\|=\max _{T \subseteq S}|P(T)-Q(T)|=\frac{1}{2} \sum_{s \in S}|P(s)-Q(s)| .
$$

Inequalities

- For all real x, we have $1+x \leq e^{x}$.
- Convexity: A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if for any real x, y and any $\lambda \in[0,1]$, we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

If f is twice differentiable, then f is convex iff $f^{\prime \prime}(x) \geq 0$ for all x.

- Jensen's Inequality: For a convex function f, we have

$$
f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]
$$

Last updated January 17, 2024.

