
2. Problem 11.2.

3. Problem 11.7.

4. This problem shows that amplification by random walks on expanders is tight up to constant factors. Suppose there were a way to amplify the success probability of any RP algorithm as follows. If the RP algorithm uses r random bits to achieve error at most $1/2$, then there is a new RP algorithm for the same problem which uses $r + \lceil k/2 \rceil$ random bits to achieve error at most 2^{-k}, for any $k \leq 10r$. Conclude that RP = P.

5. Let G be a d-regular graph on n vertices with adjacency matrix A. Let the smallest eigenvalue of A be λ_n (so $\lambda_n < 0$).
 a) Show that for any set S of size s, the number of edges with both endpoints in S is at least
 \[
 \frac{1}{2} \left(\frac{ds^2}{n} + \lambda_n s \left(1 - \frac{s}{n} \right) \right).
 \]
 b) Conclude that the size of the largest independent set is at most $-n\lambda_n/(d - \lambda_n)$.