1. Problem 6.5.

2. Problem 6.12. Hint: removing edges never increases the effective resistance. Also, you need not construct a d-regular counterexample, but each degree should be either d or $d + 1$.

3. You will need the following proposition involving a stopping time for a random walk \{X_t\} on a graph $G = (V, E)$ with stationary distribution \{\pi_v, v \in V\}. Recall that a stopping time is a random time which can be specified by an online algorithm, i.e., it doesn’t depend on the future.

Proposition. Let i be a vertex and S a stopping time such that $X_S = i$ and E_iS is finite. Then E_i[number of visits to vertex j before time S] = π_jE_iS.

Note that this implies the hitting time $h_{ii} = 1/\pi_i$.

a) Show that for $j \neq i$, E_i[number of visits to vertex j before returning to i] = π_j/π_i.

b) Show that for $j \neq i$, E_j[number of visits to vertex j before visiting i] = π_jC_{ij}, where C_{ij} denotes the commute time between i and j.

c) Conclude that for $j \neq i$, \Pr_i[visit vertex j before returning to i] = $1/(\pi_iC_{ij})$.

4. Give the best upper bound you can on the expected time for a random walk on the n-cycle to visit each vertex n times. You get full credit for showing $O(n^2 \log n)$, plus bonus points for better bounds. The correct answer is $\Theta(n^2)$.