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Abstract

We investigate the relation between the second eigen-
value and the linear expansion of regular graphs. The
spectral method is the best currently known tech-
nique to prove lower bounds on the expansion. We
improve this technique by showing that the expan-
sion coefficient of linear-sized subsets of a k-regular
):IEGI)*’ )) ’
where A;(G) is the second largest eigenvalue of the
graph. In particular, the linear expansion of Ra-
manujan graphs, which have the property that the
second largest eigenvalue is at most 2vk — 1, is at
least (k/2)”. This improves upon the best previ-
ously known lower bound of 3(k — 2)/8. For any
integer k such that k — 1 is prime, we explicitly con-
struct an infinite family of k-regular graphs G, on
n vertices whose linear expansion is £ and such that
AM(Gn) € 2vk — 1+ o(1). Since the graphs G, have
asymptotically optimal second eigenvalue, this essen-
tially shows that (k/2) is the best bound one can
obtain using the second eigenvalue method.

graph G is at least £ (1 — y/max(0,1—

1 Introduction

Given an undirected k-regular graph G = (V, E) and
a subset X of V, we define the expansion of X to be
the ratio Iﬂ%{(l{ll, where Ng(X) = {w eV : I €
X, (v,w) € E} is the set of neighbors of X. Graphs
whose all subsets of size lying in a given range have

large expansion are called expander graphs.
Expander graphs are widely used in Computer
Science, in areas ranging from parallel computa-
tion [2, 5, 14, 19, 22] to complexity theory and cryp-
tography [1, 6, 10, 23]. The range of the subsets
whose expansion is relevant and the magnitude of the
expansion needed depends on the nature of the ap-
plication. For example, in the design of the AKS
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sorting circuit, we use expanders of constant degree
such that subsets of size at most ¢|V| have expan-
sion at least 15;‘, where ¢ is a fixed positive constant.
The depth of the resulting network is proportionnal
to the degree of the expander. In other applications,
like the construction of non-blocking networks in [5],
we need a family of fixed degree uneven bipartite ex-
panders where the expansion of linear-sized subsets
is greater than % Indeed, an expansion greater than
k/2 guarantees that a constant fraction of any linear-
sized subset have unique neighbors, which is crucial
in the construction in [5].

It is known that random regular graphs are good
expanders. For example, for any 8 < k — 1, there
exists a constant « such that, with high probabil-
ity, all the subsets of a random k-regular graph of
size at most an have expansion at least 3. However,
the explicit contruction of expander graphs is much
more difficult. The first constructions [16, 9, 11] use
techniques from group representation theory and har-
monic analysis to prove the desired expansion prop-
erties.

The best currently known method to calculate
lower bounds on the expansion in polynomial time re-
lies on analysing the second eigenvalue of the graph.
It is known that all the eigenvalues of the adjacency
matrix A(G) of G are real. Let X;(G) denote the i-
th largest eigenvalue of G. We have Ao(G) = k and
A(G) = max(A1(G), [An-1(G)]) < k, with equality iff
G is not connected or bipartite. The relation between
the expansion and the spectrum of a graph was in-
troduced by Tanner [21] who showed that, for any
subset X of a k-regular graph

k21X]

|Na(X)} > FEFTEETE) A2 L

(1)

The smaller A is, the higher expansion this bound
implies. However, since liminf A(G,) > 2vk — 1 for
any family of k-regular graphs G, [3], the best asymp-
totic expansion coefficient one can get by Tanner’s re-
sultis £+0(k). This bound is achieved by Ramanujan
graphs. By definition, a Ramanujan graph is a con-
nected k-regular graph whose eigenvalues # +k are
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at most 2v/k — 1 in absolute value. Infinite families of
Ramanujan graphs have been explicitly constructed
in [15, 17] when k — 1 is prime. The linear expansion
of Ramanujan graphs was recently [12] improved to
3(k - 2)/8.

We define the linear expansion of a family of k-
regular graphs G, on n vertices to be the best
lower bound on the expansion of subsets of size up
to an, where « is an arbitrary small positive con-
stant. QOur aim is to calculate the best linear ex-
pansion one can prove using the second eigenvalue
technique. In this paper, we prove that the expan-
sion of linear subsets of a k-regular graph G is at least

k-
%(1_ k-4

A1(G)
sized subsets of Ramanujan graphs have expansion at

max(0,1 — )-. In particular, linear-

least g—. On the other hand, for any integer k such
that £—1 is a prime congruent to 1 modulo 4, and for
any function m of n such that m = o(n), we explicitly
construct an infinite family of k-regular graphs G, on
n vertices such that A(G,) < 2vk — 1(1 4 o(1)) and
G, contains a subset of size 2m with expansion k/2.
Since such a family has asymptotically optimal sec-
ond eigenvalue, this essentially shows that k/2 is the
best bound lower bound on the linear expansion one
can obtain by the second eigenvalue method. How-
ever, it is still an open question whether there ex-
ists a family of Ramanujan graphs with linear ex-
pansion k/2. As a biproduct of our techniques, we
obtain known bounds on the number of edges in an
induced subgraph of a regular graph, we give a sim-
ple proof of Tanner’s inequality, and we establish a
lower bound of 2v/k — 1(14+0O(logj % n)) on the second
eigenvalue of any k-regular graph A previous lower
bound of 2vk — 1{1+ O(log,‘7 n)) was proven in [18]
and improved to 2v/k — 1(1+ O(logg 2 n)) in [8]. Our
results provide an eﬁiment way to test that the ex-
pansion of linear sized subsets of random graphs is
at least " + O(k%/* logll 2k). As an application of
the lmproved expansion of Ramanujan graphs, we
can build explicit selection networks of asymptotic
size (3 + €)nlog, n, for any ¢ > 0, improving on the
bound 6nlog, n that was previously known. As de-
fined in [19], a selection network is a network of com-
parators that classifies a set of n numbers, where n is
even, into two subsets of n/2 numbers such that any
element in the first set is smaller than any element in
the second set.
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2 Notation, and

background

definitions,

Throughout the paper, G = (V, E) will denote an
undirected connected graph on a set V of vertices.
If G is regular, it is easy to see that |[Ng(X)| >
|X| for any subset X. Let L2(V) denote the set
of real valued functions on V and Li(V) = {f €
LA(V); Y,ev f(v) = 0}. As usual, we define the
scalar product of two vectors f and g of L%(V) by

fg=3 f(v)g(v)

veV

and the euclidean norm of a vector f by ||f|| =
V- F. We denote the adjacency matrix of G by
A(G), or simply by A if there is no risk of confu-
sion. A(G) is the 0-1 n x n matrix whose (%, j) entry
is equal to 1 iff (4, ) € E. If we consider f € L%(V)
as a row vector, we have

> f(w

(Af)(v) =
(vw)eE

A defines a self-adjoint operator since Vf, g € L%(V)

we have

(Af)-g=f-(Ag)= D flv)gw) (2)

(vyw)eE

The girth of G, denoted by ¢(G), is the length of the
shortest cycle in G. For any subset W of V, we denote
by xw the characteristic vector of W:

1 fveW

xw(v) = 0 otherwise

For any matrix M with real eigenvalues, we denote
by Ai(M) the i-th largest eigenvalue of M. We also
denote A;(A(G)) by Ai(G). If X and Y are two sub-
sets of a graph G = (V, E), then e(X,Y) = |{(u,v) €
X xYNE}. If Zy,...,2Z; is a sequence of non-
empty subsets of V, we denote by R{%0:Z1,-:2t} the
set of real valued functions on {Zy, Z;,...,2Z:}. We
define ®(Zg, Z1, . .., Z:) to be the linear mapping in
RtZ0,Z21..24} whose matrix in the canonical basis
(X{Zo}:--»X{z,}) is the (¢t + 1,¢ + 1) matrix with

entry (%,j) equal to ﬁ-f'—"zi-l ®(Zo, Z1,...,2¢) can
be viewed as the adjacency matrix of the weighted
directed graph on R1Z0:Z1-:2:} where the weight of
the edge (Z;, Z;) is equal to the average number of
neighbors that a node in Z; has in Z;.

3 Lower bound on the expan-
sion



Lemma 1 Let G (V,E) be a graph and let
Zo,...,Z;s be a sequence of non-empty disjoint sub-

sets of V. For 0 < i < t, we have Xi(G) > M(®),

where ® = ®&(Zy, Z1,...,2,).
Proof Define the scalar product <,> on
R{ZD,~~~,Z|} by

1

<rs>= Y |Zir(Z:)s(Z;).

=0

Let % be the linear mapping from R{Zo-2:} o
L?(V) that mapps x{z,} to xz,-

Claim 1 For any r,s € R{%0:22t} we have P(r) -
YP(s) =<r,s>.

Proof Since both sides of the above equality are
bilinear in r and s, it suffices to show that the equality
holds when r and s are elements of the canonical basis
of R{Zo,...,zc}_ But ¢(X{Z,}) . ¢(X{Z’}) =xz Xz; =
6312 =< xqz.}, Xz, >

Claim 2 For any r,s € R{Z024 | we have 9(r) -
AP(s) =< r, ®s >.

Proof The claim follows from bilinearity and the
equalities ¥(x(z,}) - Av(xqz;3) xz; - Axz;
e(Z.-,ZJ-) =< X{Z.-}:(I)X{Z,-} >.

This implies in particular that & defines a self-
adjoint operator with respect to the product <,>
and so the eigenvalues of @ are real. Using the ele-
mentary theory of quadratic forms and the injectivity
of 1, it follows that

. <r®r>
max min -———
L reL-{0} <r7,r>
max min L AS
L™ sew(L)-{o} ||f]|
max min f—ﬁ
L' seL'—{o} ||f|[?
2i(G),

Ai(®@)

where L and L' range respectively over the subspaces
of R{Z0-+2:} and L2(V) of dimension i +1. W

Similarly, one can prove that An_1-;(G) < A\i—i(®)
for 0 < i < t, but we will not need this inequality in
the proof of Theorem 1.
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Lemma 2 Let G = (V,E) be a graph and X_, =
0, Xo,X1,..., Xt be a sequence of subsets of V such
that, for 0 < i <t — 1, the degree of any element of
X; is equal to k, Ng(X;) C Xip1 and | X4 < |X;|.
If the eigenvalues of the adjacency matriz of G are
80,61,...,0:, with |6o] > [61] > -+ > 6], then &) s
greater than or equal to the i-th largest eigenvalue of
the matriz My11(k;po, p1,- .., pt—1) equal to

0 k 0 0 0
po 0 k—pp 0 1}

0 pm 0 k—p :
R .. 0 ’
S et g

L — Xil—1Xi-1
where p; = k]JX_.:Ile_IX_.-lJ

Proof Note that X; C N%(X;) C X;42. Consider
the cover graph G. of G defined on V. = V x {0,1}
and where ((u,!),(v,m)) € V. x V. is an edge iff
(u,v) € F and | # m. The adjacency matrix of
G is the tensor product of A(G) and A(K?2), and so
the eigenvalues of G, are the pairwise products of the
eigenvalues of A(G) and A(K2), namely Ao, ..., An_1
and —Ap,...,—An_1, hence Ai(Ge) = |6;] for 0 < i <
n—1. For 0 <7 <t,let Y; be the subset of V. defined
by Y; = X; x {(: mod 2)}. Then, for 0 < i < t—1, the
degree of any element of Y; is equal to &, Ng_(Y;) C
Yiy1 and Yy # Yi41. Now, we apply lemma 1 to G,
and the subsets Z; = Y; — Y;_, for 0 < i < t. The
Zi’s are non-empty and disjoint since Y; is a strict
subset of Yiy2 and ;NY; = 0 if ¢ £ j (mod 2).
Note that |Y;| = |X;| and |Z;| = |X;| — | Xi_2|. For
0 S i S t—l, we have e(Z,-, Z,'+1) = C(K—Yi_z, Y;'+1—
Yic1) = e(Yi,Yiqr — Yic1) — e(Yio2,Yipr — Yioq).
But e(Yi-2,Yi41 = Yio1) = 0 since N(Y;_3) C Yi1.
So e(Z;, Zi41) = e(Y;,Yiqr) — e(Yi, Yio1) = k|Y;| -
E|Yi-1] = k(1X:|~1Xi_1l). Finally, N(Z;) C N(Y;) C
Yiy1 = Z;41 UY;_;. On the other hand, N(Y;_3) C
Y;_2 and so there are no edges between Z; and Y;_3
(by convention Y_, = Y_3 = 0.) Hence N(Z;) C
Zig1 U Z;_q and e(Z;, Z;) = 0 if |i — j| # 1. There-
fore ‘DG¢(Z07 Zl) v ,Zt) = Mt+1(k;P0) Pl ';Pt—l)'
This concludes the proof.

Lemma 3 [12] Let W be a subset of a k-regular
graph G and H the subgraph induced on W. Then
Ao(H) < Aa(G) + (k ~ M (G)ITL.

Lemma 4 Let G = (V,E) be a k-regular connected
graph and Xo, X1,...,X: a sequence of non-empty



subsets of V such that, for 0 < i < t — 1, we
have Ng(X;) C Xip1. Forl > 1, Ai(G) +4k’]3";—‘l
is greater than the largest eigenvalue of the matriz

Mygi(k: po, p1y s ptets 1,000 1),
w1 (k; po, p1 Pi-1 )

-1 times

Proof Since the largest eigenvalue of the matrix
My, is at most k, we can assume without loss of
generality that |X,|k'~! < n. We recursively con-
struct subsets X; of G, fort < i < t+1{—1, such that
Ng(X.'_l) CX;andp;_1 =1. Leti € {t, .. .,t—{-l—?}
and assume that we constructed Xi41,...,X; such
that p; = 1 for t < j < i. The condition p; = 1
implies that | X; 41| = k|X;| — (k- 1)|X;_1| < E|X;],
and so |X;| < k*~%|X¢| < . On the other hand,
C(X,', V- X,'_l) = B(X,', V) - C(X.',X,'_l) = le,I -
k|Xi—1| since G is k-regular and Ng(X;—1) C X;.
Therefore, |Ng(X;) — Xi—1] < k| X;| — k[ Xi-1]. But
|V—X;_1l = n—|X;_1| > k| X;|—k|X;_1|. Therefore,
there exists a subset X;,; of V containing Ng(X;)
and such that | X;41 — Xi—1| = k| X;| — k| Xi-1|. Since
G is k-regular connected and since Ng(Xi-;) C X;
and |X;| < n/2, we have | X;_1| < |Xi| and so p; is
well defined and equal to 1.

Similarly, |Xj-1] < |Xj| for 0 < j < t (we
define X_; to be the empty set). Now, we ap-
ply lemma 2 to the induced graph H on W
Xt4i-2 U Xi4i—1 and the subsets Xo,..., Xipi-1.
From the theory of matrices with non-negative en-
tries [20], we know that Ag(H) is the largest eigen-
value of H in absolute value. Hence, A(H) >
Ao(Myqi(k; po, Py -, pe=1,1,...,1)). By lemma 3,
however, Ao(H) < M1 (G)+(k—M () < X (G)+
4&:}"—' since |A| < k and |W| < 2K'-1|X|.

[ |

Lemma 5 The eigenvalues of  the ma-
tric Miy1(k;po,1,...,1) are 2y/k — 1 cosh 8, where 0
ranges over the solutions (in the compler domain) to
the equation

((4k—4) cosh? §—kpg)s;(8) = 2(k—po) cosh(8)s;-1(8),

and s;(0) is the analytical exiension of the function
s;%’}g% over the domain of complez numbers. If the
largest eigenvalue of Miyq(k;po,1,...,1) is at most
2vk — 1 cosh(8’), with @ > 0, then py < (14€%°")(1+
o(})).

Proof For ease of notations, we assume that

sinh(f) # 0. The case sinh(f) = 0 can be treated
by replacing sinh(i6) by s;(6) in the proof. First,

299

we note that any real number A can be written as
2vk — 1 cosh(f), where @ is a complex number. Such
A is an eigenvalue of Mi41(k;po, 1, ..., 1) with eigen-

vector (7o, ..., r) iff
Arg = kmy 3)
Ary = poro + (k= po)r2 (4)
Ar; = rmiai+(k=Dripafor2<i<i-1(5)
Arr = (6)

From Egs. 5 and 6, we see that, up to a constant
factor, r; = (k — 1)7 sinh(({ + 1 — #)6) for i > 1.
Egs. 3 and 4 imply that A2r; = pokry + A(k — po)r2,
which reduces to the equation in the lemma.

Claim 3 If ¢ is a nonnegative real and | > 1, then

-1 _, sinh((I—1)8)
e s sinh(10) M

<e?

Proof To prove inequality 7, we observe that

_g sinh((I —1)8) e—(1-1)8 _ —(1+1)8
e~f _

sinh(6) elt — 16
- sinh(#)
- sinh(16)
-6
e
<
-_— l b
since sinh(16) > Isinh(6). N

By setting A(8') = (X'? — kpo)sinh(i0’) — 2(k —
po) cosh &' sinh((!—1)8"), where X' = 2v/k — 1 cosh ¢,
we see that h(8’) goes to +oo as # goes to +o00, and
so the condition in the lemma implies that (') > 0.
Using Eq. 7, we get

2 _ , sinh(({ — 1)¢)
(M —kpo) > 2(k = po)cosh(f )———sinh(w,)
= 2k~ po) cosh(#)e* (14 0(7))

Therefore,

po(k—2e= cosh ¢') < (X'?—2ke™" cosh 0’)(1+O(%))
, ) (8)
since e=® cosh® < 1, k > 3¢=% cosh & and A* >
8k/3. By factoring 2 cosh @ in the righthand side of
Eq. 8 and noting that
(2k — 2) cosh 0 — ke=*'= k(2cosh &’ — e=%") — 2cosh ¢’
=ke? —2cosh#,

we see that Eq. 8 implies pg < 2 cosh(ﬂ’)e’l(l+0(%)).
]



Theorem 1 If G = (V,E) is k-regular and X =
max(A1(G),2vk — 1), then for any non-empty sub-
set X of size at most k=1/¢|V|,

>z (1—,/1—4';—4)(1+0(e))

where the constant behind the O is a small absolute
constant.

INe(X)| o
X

Proof Let A = 2k — lcosh(ﬁ), where § > 0.
We apply lemma 4 with t = 1, X = X and
X1 = Ng(X) and I = |L]. Let M = X 44k IXdd —
2Vk lcosh(ﬂ’) where ¢ > 6 > 0. Since |X1| <
E|X| < k'~ %n, we have |X1|k’ <k-%nand X=X <
4k'~3¢ = O(e?). This implies that X = A(1 + O(¢))
and cosh 6 — cosh & = O(e?). Using the inequality
(z — y)? < 2(cosh z — cosh y) valid for z > y > 0, we
see that 0’ — @ = O(e). Lemma 5 then implies

po < (1+e¥)(1+0(e)) = (1 + €)(1 + O(c)).

Hence

Na(O) _ ko k

|1 X| po — 2€° coshé?(1 +0(9).

Using the equalities e = cosh 6 — sinh # = cosh § —

cosh?9 — 1, we get

1 1 4k — 4
oosho T Vl_cosh20—l— 1= X2

This concludes the proof. W

Corollary 1 If G is k-regular on n vertices, then
A(G) > 2vE = 1(1 + O(log; 2 n)).

Proof We apply lemma 4 with X, consisting of a
single vertex, t = 0 and [ = Lm—J From the the-
ory of non-negative matrices [20], we know that the
largest eigenvalue of the matrix M;(k;1,...,1) is no
smaller than the largest eigenvalue of the same ma-
trix where the (1, 2) entry is replaced by k£ — 1. But
a calculation similar to the one in lemma 5 shows
that the largest eigenvalue of this matrix is cos(ffy)-

Hence X1(G) + 4’;—l 2 2Vk —1cos(ff7). We con-
clude the proof by noting that 5"1 = O(log; 2 n)) and
cos(ffy) =1+ O(log;?n). N

As we mentionned in the introduction, the lower
bound in Corollary 1 was independently obtained

in [8].

4 A family of “almost” Ra-
manujan graphs with expan-
sion k/2

Lemma 6 Given k > 3, a real 8 > 0 and X =

2vk — 1cosh 0, let Si(a,b) be the sequence defined

forl1 >0 by So(a b) = a, Si(a,b) = b, AS1(a,d) =
250(a, b) + (k — 2)S(a, b) and the recurrence relation

ASi(a,b) = Si—1(a,b) + (k — 1)Si+1(a, ), forl>2,
(9)
where a and b are real numbers. Ifby +...4+ b = Aa,

then VI > 1,

k k
3" 5i%(a,b:) > (k — 1)' ' cosh?((1 — 1)8) Y bi*

i=1 i=1
Proof First we show that, for | > 0,
Sisr(k,A) =

2(k — 1)'% (cosh 8 cosh 16 + £ sinh 8 sinh 16)(10)

We first notice that the two sequences (k —
1)="2 cosh(16) and (k — 1)~"/?sinh(lf), form a ba-
sis to the set of sequences satisfying the recurrence 9.
Therefore, to prove Eq. 10, it suffices to show that
the two sides are equal for I = 0 and I = 1. The case
1 = 0 is straightforward. For [ = 1, we have

ASy(k, A) — 2So(k, A)

k-2
-2k
k-2
4k = 1) cosh® § — 2k(cosh? & — sinh? §)

k-2
which is equal to the righthand side of Eq. 10.

Sa(k, X)) =

Since Si(a, b) is a linear function of (a,b), we have
Si(a,b) = cia + dib, where ¢; = Si(1,0) and d; =
S1(0, 1). Therefore,

k
Esﬁ(a,b;)

k
2:(@2412 + 2cidiab; + di*b?)

i=1

k

(ker + 2Ad1)c1a2 + d12 Z b|2
i=1

But, using the same reasoning as before, we know

that ¢; = (k— 1)~ %¢ ﬂlh—alL < 0 since ¢; = =5

and so k¢; +2,\d1 = 25;(k, ) —ke; > 0. On the other

hand, k 5 > A%a? by Cauchy-Schwarz. Hence,

i=1 ;—

Zs, (a,65) > ((key +2,\d1)c1—+d12)2b2

i=1
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But (ke + 2Ad1)clA—l°, + d? = (%c; + dp)?
M’/\%ﬁl‘ We conclude by noting that Si(k, )
2(k — 1) "5cosh fcosh(i — 1)9. W

A%

Lemma 7 If G = (V, E) is k-regular on n vertices,
for any f € L2(V), we have

OO

vevV

f-Af < MNP+

Proof Let f = Lg‘lXV be the orthogonal pro-
jection of f on the space spanned by the constant
vector xv. Then fo = f — f is the orthogonal pro-
jection of f on LE(V). We have Af = Af + Afo =
kf + Afo, and so f - Af = k||f|[> + fo - Afo since
f-Afo=Af-fo=kf -fo =0 Bu|fl?=
Ly |2 = (T,y £(1))*/n, and fo - Afo <
=1(G)||fo||2 < /\1(G)||f||2 since || f]|* = || /ol >+]I£1I>-

Theorem 2 For any integer k such that k — 1 is
prime, we can ezplicitly construct an infinite fam-
tly of k- regular graphs G, on n vertices whose linear
ezpansion is £ and such that \,(G,) < 2vk - 1(1 +

2

g* log
2 log:nn)'

Proof From [15] and [17], we know that we can
explicitly construct an infinite family of bipartite Ra-
manujan graphs H,, on n vertices whose girth is at
least (4/3 + o(1))logg_,n. Let H, = (V,E) be an
element of the family, u € V a vertex of H, and
t = |_°—L;{"lj—2. For 0 <1 < t+1, let V; denote
the set of nodes in H, at distance ! from v. Let
U1, ..., u; be the neighbors of u and let vy, ..., v; be
k vertices of V5 such that (u;,v;) € E. The sub-
graph of H,, induced on the subset U;Ig V; is a tree
rooted at u since it is connected and contains no cy-
cle. We will denote by T; the subtree rooted at u;
minus the subtree rooted at v;. Let u’ and v’ be two
elements not belonging to V. Consider the k-regular
graph Gpyp = (V', E’), where V! = V U {«/,v'}
and E' = EUUS_ {(v', w), (us, o), (v/, v3), (v, v) } —
Ui=1{(u‘,v,),(v.,u.)}. Figure 1 shows the graph
Gn42 in the neighborhood of u in the case & = 3.
For shorthand, we denote A(G,42) by A’ and A;(4')
by A1. Assume that A; > 2v/k — 1 (otherwise we are
done), and let Ay = 2v/k — 1cosh 8, with 6 > 0. Let
g € LE(V') be an eigenvector correspondmg to Ap.
Since u and u’ have the same neighbors in G, ;2 and

Figure 1: The graph Gp42 in the neighborhood of
u in the case ¥ = 3. The dotted edges are those
belonging to E — E'.

A1 # 0, we have g(u) = g(u'). Let f be the element
of L?(V) that coincides with g on V. By Eq. 2, we
have

Allgl? = g-Ayg

k
FoAHR)f =2 g(u)g(vi) +

i=1

2 E g(u)g(u;) +2 Es(v')g ()

i=1
< frAHR)f+ Z:(y(w)2 +9(v)?) +
i=1
2219(w')? + 221 g(v')? (11)

In the third inequality, we used the equation
(A'9)() = Mg(w') and (A'g)(v") = Ayg(v'). Note
that - oy f(w) = —g(uw’) — g(v') since g € LE(V").
Using lemma 7, we get

AT < MEDIIP + o) + o(0'))?
< 2VE-1(|lgl]? - g(w')® — g(v)) +
2wy +9')?)
< ATl

301



for sufficiently large n. Combining this with Eq. 11,
we obtain

k
Mgl <2vE—Tllgl1* + D (g(w:)? + g(vi)?) +

i=1

2219(u')? + 22 9(v')?
k
<VE=1(lgll* +2)_(g(u:)? + g(vi)?)(12)
i=1
The second inequality follows from

k 2 k

o) = 5 (o) <53 g(uy?
M i=1 M i=1

and a similar relation corresponding to v'. For 1 <
i<kand1<I<t+1,let pp g(u) and p;; =
EwGT.-nV' 9(w)/|IT; N V;|. For any w € T; N V;, with
I > 2, we know that A;g(w) is equal to the sum of the
values of g on the parent of w and on the k—1 children
of w in T;. By summing up these equalities, we see
that My ptiz = pi g1+ (k—1)pmi 4. Similarly, Ay i ; =
2pti0 + (k — 2)pi5. Hence p;; = Si(g(u), g(u;)), for
1 <1 <t+1, where S; is the function defined in
lemma 6. Therefore, using Cauchy-Schwarz,

Y gwp

llgl* >
i=1 weT;NVy4,
k
2 (k=2)(k-1)""" )" S 2(g(u), g(wi))
i=1
2

k
1 2 2
Ecosh (t9) 'E:I g(ui)?.

Similarly, we can prove the inequality [|g[|> >
3 cosh?(t0) =5, g(v;)? by using a slightly modified
version of lemma 6. Combining this with Eq. 12
yields

coshf <1+

13
cosh?t9 (13)

Using the inequalities cosh 8 > 1 - % and coshtf >
" /2, we see from Eq. 13 that 0 = O(e~*) and
logd < —tf + O(1). Hence 6 < l—°§i for suffi-
ciently large n. Finally, \; = 2v%k — lcoshf =
WVE=T(1+ S (1+0(1))) < 2VE=T(1 + 2ok logn)

ogjy n
since t > (% + o(1))log; n. Theorem 1 implies that
the linear expansion of the family G, is at least %
Since the subset {u,u’} has k neighbors, this bound

is tight. W

If k—1is a prime congruent to 1 modulo 4, we
know from {15] that there exists an infinite family of

non-bipartite k-regular Ramanujan graphs with girth
at least 2(1+ o(1))log;_; n. By doing the same con-
struction as in Theorem 2, we obtain k-regular graphs
whose second largest eigenvalue in absolute value is
2vk — 1(1 4 o(1)) and linear expansion k/2. More-
over, by adding nodes at regions of the graph at suf-
ficiently large distance from each other, we can con-
struct for any m = m(n) = o(n) a family of k-regular
graphs whose second largest eigenvalue in absolute
value is 2v/k — 1(1+ 0(1)) and containing a subset of
size 2rn with expansion k/2. The proof of these two
statements is very similar to the proof of Theorem 2.

5 Examples and applications

1. Number of edges in an induced subgraph.
Let G = (V, E) be a k-regular graph on n ver-
tices and Zo a proper subset of V. We apply
lemma 1 and the remark following it with ¢ = 1
and Z; = V — Z,. Note that M(G) = X(®) =k

since ;:0 e(Z;,Z;) = e(Z;, V) = k|Z;|. There-
fore, k4 A1 (®) = trace(®) = & Zgnz" + 2 Zélzl .

But e(Zl,Zl) = klle - C(Zl,Zo) = klle -
klZo' + C(Zo,Zg), and so IZOHZII(k + Al(Q)) =
ne(Zo, Zo) + k|Z1)|Zo| — k|Zo|*. The inequality
2
[A1(®)] < A then becomes [e(Zo, Zo) — k1ZeL2| <
Al Zo|(1 - ]%L) Note that this inequality is also
true in the case Zg = @ or Zp = V. This result
has already been established in [4].

. Tanner’s inequality. Again, we assume that
G = (V,E) is a k-regular graph on n vertices.
Let X be a proper subset of V. We apply
lemma 2 with ¢t = 3, Xy = X, X; = Ng(X)
and X3 = X3 = V. We have py = k%l[, p1

k )‘{,1:;{ and p2 = k. As before, k is an eigen-

value of M,(k; po, p1, k). Since the (3,7) entry of
this matrix is null if i = j (mod 2), the other
eigenvalues of My(k; po, p1,k) are {o,—a, -k},
with |o| < MG). But det(My(k; po, p1, k) =
k2po(k — p1) = k?2, and so po(k — p1) < A(G)%.
A simple calculation shows that this implies
Eq. 1. Note that we implicitly assumed that
Ng(X) is a proper subset of V. However, we can
directly check that Eq. 1 holds if Ng(X) = V.

. Random regular graphs. In [7], it was shown
that, if k£ is even, then for “most” k-regular
graphs G, we have A1(G) < 2k — 1+ O(logk).
Therefore, using Theorem 1, we see that for
“most” regular graphs, we can prove in polyno-
mial time that linear sized subsets have expan-
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sion at least

k
t

which is equal to % — O(Ic3/4 log1/2 lc).

_ 4k - 4
(2vk — 1+ O(log k))?

)’

. Selection networks. We can use Theorem 1
to build explicit selection networks of small size.
A selection network is a network of comparators
that classifies a set of n numbers, where n is
even, into two subsets of n/2 numbers such that
any element in the first set is smaller than any
element in the second set. In [19], a probabilis-
tic construction of a selection network is given
using an asymptotic upper bound of 2nlog,n
comparators. Also, an upper bound slightly
less than 6nlog, n is shown by a deterministic
construction. Using Theorem 1, we can [13]
construct selection networks of asymptotic size
(3 + ¢)nlog, n, for any € > 0.
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