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Abstract. We construct an efficient 3-source extractor that requires one of the sources to be signif-
icantly shorter than the min-entropy of the other two sources. Our extractors work even when the
longer, n-bit sources have min-entropy nΩ(1) and the shorter source has min-entropy log10 n. Previous
constructions for independent sources with min-entropy nγ required Θ(1/γ) sources [Rao06]. Our con-
struction relies on lossless condensers [GUV07] based on Parvaresh-Vardy codes [PV05], as well as on
a 2-source extractor for a block source and general source [BRSW06].

1 Introduction

Motivated by the widespread use of randomness in computer science, researchers have sought algorithms
to extract randomness from a distribution that is only weakly random. A general weak source is one with
some min-entropy: a distribution has min-entropy k if all strings have probability at most 2−k. We would
like to extract randomness from a weak source knowing only k and not the exact distribution. However, this
is impossible, even for more restricted sources [SV86].

Therefore, Santha and Vazirani showed how to extract randomness from two independent restricted weak
sources [SV86]. Can we design such efficient randomness extractors for general independent sources? These
are efficiently computable functions Ext : ({0, 1}n)C → {0, 1}m with the property that for any product
distribution X1, . . . , XC, the output Ext(X1, . . . , XC) is close to uniformly distributed as long as each Xi has
high enough min-entropy. Our primary goals are to minimize the number of sources required and the amount
of entropy needed. Secondarily, we’d like to maximize the length of the output and minimize the error, which
is the distance of the output from uniform.

Extractors for independent sources have been useful in constructing deterministic extractors for space-
bounded sources [KRVZ06] and in new constructions of network extractor protocols [KLRZ08].

1.1 Previous Results

The question of finding such an extractor came up as early as in the works of Santha and Vazirani [SV86]
and Chor and Goldreich [CG88]. After that, following the work of Nisan and Zuckerman [NZ96], most work
focused on constructing seeded extractors. This is simply a two source extractor where one source is assumed
to be very short and uniformly distributed (in this case the problem only makes sense if the extractor
outputs more than what’s available in the short seed). Extractors for this model have found application
in constructions of communication networks and good expander graphs [WZ99,CRVW02], error correcting
codes [TZ04,Gur04], cryptographic protocols [Lu04,Vad04], data structures [MNSW98] and samplers [Zuc97].
Seeded extractor constructions are now available that can extract uniform bits from a source with small
entropy using a seed of length only O(log n) [LRVW03,GUV07].

In recent years there have been several works improving the state of the art for independent sources
[BIW04,BKS+05,Raz05,Bou05,Rao06,BRSW06]. We now know how to extract from two sources when the
entropy in each is at least something like .4999n [Bou05], from three sources if the entropy in each is at
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least n0.99 [Rao06] and from O(1/γ) sources if the entropy in each is at least nγ [Rao06,BRSW06]. All of
these constructions have exponentially small error, and by a result of Shaltiel [Sha06], the output length can
be made almost best possible. Thus, the tradeoff that is most interesting is the one between the number of
sources required and the entropy requirements.

1.2 Our Work

In this paper, we construct extractors which require only three sources with polynomial min-entropy. How-
ever, there is a key caveat: one of the sources must be significantly shorter than the min-entropy of the
other two sources. On the plus side, while the longer, n-bit sources must have min-entropy nΩ(1), the shorter
source need only have min-entropy log10 n.

Extractors for uneven-length sources may be more interesting than they appear, for two reasons. First,
the extractors with the most applications are seeded extractors, which are extractors for uneven-length
sources. Second, in other settings the uneven-length case was more difficult. For example, in the two-source
setting with entropy rate bigger than 1/2, the even length case was known for decades (before extractors
were defined), but the uneven-length case was only proved by Raz in 2005 [Raz05].

We now state our three source extractor precisely.

Theorem 1 (3-Source Extractor). There exists a constant d and a polynomial time computable function
3Ext : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 → {0, 1}m which is an extractor for three sources with min-entropy

requirements k1, k2, k3 =
√

k1, error 2−Ω(k2) + 2−k
Ω(1)
1 and output length m = k1 − o(k1) as long as:

– log k1

log n2
> d log(n1+n3)

log k1

– k2 > d log n1

One example of how to set parameters is in the following corollary:

Corollary 1. There exist constants d, h such that for every constant 0 < γ < 1, there is a polynomial time

computable function 3Ext : {0, 1}n × {0, 1}n × {0, 1}nγ/h → {0, 1}nγ−o(nγ) which is an extractor for three

sources with min-entropy requirements k = nγ , nγ , logd n, and error 2−Ω(log10 n).

The corollary follows by setting n1 = n3 = n, n2 = nγ/h, k1 = nγ , k2 = logd n and choosing h to be a
large enough constant.

For smaller min-entropy, the first constraint in the theorem forces the length of the shorter source to be
much shorter than the other two sources.

It turns out that we don’t really need three mutually independent sources to get our results. We obtain an
extractor even when we have just two sources, but one of them is a block source with a short block followed
by a long block.

Theorem 2 ((Short, Long)-Block-Source Extractor). There exists a constant d and a polynomial
time computable function 3Ext : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 → {0, 1}m which is an extractor for a block
source with min-entropy requirements k1, k2 and an independent source with min-entropy k3 =

√
k2, error

2−Ω(k1) + 2−k
Ω(1)
2 and output length m = k2 − o(k2) as long as:

– log k2

log n1
> d log(n2+n3)

log k2

– k1 > d log n2

Salil Vadhan observed that a slightly different analysis allows us to reverse the order of the short and
long sources.

Theorem 3 ((Long, Short)-Block-Source Extractor). There exists a constant d and a polynomial
time computable function 3Ext : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 → {0, 1}m which is an extractor for a block
source with min-entropy requirements k1, k2 and an independent source with min-entropy k3 =

√
k1, error

2−Ω(k2) + 2−k
Ω(1)
1 and output length m = k1 − o(k1) as long as:

– log k1

log n2
> d log(n1+n3)

log k1

– k2 > d log n1

2



1.3 Techniques

We build on the work of Guruswami et al. [GUV07] and Barak et al. [BRSW06]. Guruswami et al. showed
how to build a very good seeded condenser. This is a function Cond : {0, 1}n × {0, 1}d → {0, 1}m that
guarantees that if X has sufficient min-entropy k and Ud is an independent random variable that’s uniform
on d bits, Cond(X, Ud) is close to having very high min-entropy. Inspired by ideas from the list decodable
code constructions of [PV05,GR06], they showed that the following function is a condenser: Cond(f, y) =

f(y), fh(y), . . . , fht

(y), where f is a low degree polynomial, fhi

is the powered polynomial modulo a suitably
chosen irreducible polynomial and h, t are suitably chosen parameters. Specifically they showed that the
output of this function is close to having min-entropy 0.9m.

We analyze Cond when the second source is not uniform, but merely has high entropy (say αd). In this
case, we show that the output must have entropy close to 0.9αm. At first this may not seem useful, since
we end up with a distribution where the entropy is even less concentrated than the source that we started
with. However, we show that if the output is m = m1 + m2 + · · · + mC bits, each consecutive block of
mi bits must have entropy close to 0.9αmi. Using an idea from [Zuc96], we choose the mi’s to increase
geometrically. This implies that the output must be a block source: not only does each consecutive block
of mi bits have a reasonable amount of entropy, it has significant entropy conditioned on any fixing of the
previous blocks. Intuitively, since each subsequent block is significantly larger than the previous ones, the
previous ones cannot contain enough information to significantly reduce the entropy in the current block
upon conditioning.

Block sources are a well studied object in extractor constructions. Indeed, earlier works have shown
[BKS+05,Rao06,BRSW06] that even two source extractors are easy to obtain under the assumption that both
or even one of the sources have some block source structure. In particular, a theorem from [BRSW06] shows
that we can extract from one block source and one independent source, if each block and the independent
source have entropy nγ , and the number of blocks in the block source is at least O(1/γ).

This completes the construction. We first apply Cond to convert the first two sources into a single block
source, and then use the extractor from [BRSW06] and an additional source to get random bits.

2 Preliminaries

For a distribution X , we let H∞(X) denote the min-entropy of the distribution. We call a distribution flat
if it is uniformly distributed on some subset of the universe.

Fact 1 Every distribution X with min-entropy at least k is a convex combination of flat distributions with
min-entropy k.

Definition 1. Let D and F be two distributions on a set S. Their statistical distance is

|D − F | def
= max

T⊆S
(|D(T ) − F (T )|) =

1

2

∑

s∈S

|D(s) − F (s)|

If |D − F | ≤ ǫ we shall say that D is ǫ-close to F .

This measure of distance is nice because it is robust in the sense that if two distributions are close in this
distance, then applying any functions to them cannot make them go further apart.

Proposition 1. Let D and F be any two distributions over a set S s.t. |D − F | ≤ ǫ. Let g be any function
on S. Then |g(D) − g(F )| ≤ ǫ.

When we manipulate sources which are close to having some min-entropy, it will be convenient to have
the following definition. For a distribution D, D(a) denotes the probability that D places on a.

Definition 2. We call a distribution D ǫ-close to k-light if, when X is chosen according to D, Pr[D(X) >
2−k] ≤ ǫ.
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The following is then immediate:

Lemma 1. If D is ǫ-close to k-light, then D is ǫ-close to min-entropy k.

The following lemma gives a sufficient condition to lowerbound the min-entropy of a source.

Lemma 2 ([GUV07]). Let X be a random variable taking values in a set of size larger than 2k such that
for every set S of size less than ǫ2k, Pr[X ∈ S] < ǫ. Then X is ǫ-close to k-light.

Proof. First note that |supp(X)| ≥ ǫ2k, or else the hypothesis of the lemma is contradicted by setting
S = supp(X).

Let S be the ǫ2k heaviest elements under X , breaking ties arbitrarily. Then for every x /∈ S we must
have that Pr[X = x] ≤ 2−k, or else every element in S would have weight greater than 2−k, which would
contradict the hypothesis. Thus, the set of elements that have weight more than 2−k are hit with probability
at most ǫ.

A block source is a source broken up into a sequence of blocks, with the property that each block has
min-entropy even conditioned on previous blocks.

Definition 3 (Block sources). A distribution X = X1, X2, · · · , XC is called a (k1, k2, . . . , kC)-block source
if for all i = 1, . . . , C, we have that for all x1 ∈ X1, . . . , xi−1 ∈ Xi−1, H∞(Xi|X1 = x1, . . . , X

i−1 = xi−1) ≥
ki, i.e., each block has high min-entropy even conditioned on the previous blocks. If k1 = k2 = · · · = kC = k,
we say that X is a k-block source.

The following lemma is useful to prove that a distribution is close to a block source.

Lemma 3. Let X = X1, . . . , Xt be t dependent random variables. For every i = 1, 2, . . . , t, let X i denote the
concatenation of the first i variables. Suppose each X i takes values in {0, 1}ni and for every i = 1, 2, . . . , t, X i

is ǫi-close to ki-light, with
∑

i ǫi < 1/10. Then for every ℓ > 10 log t we must have that X is
∑t

i=1 ǫi + t2−ℓ-
close to a block source, where each block Xi has min-entropy ki − ni−1 − 1 − ℓ.

Proof. We will need to define the notion of a submeasure. Let n = nt. Say that M : {0, 1}n → [0, 1] is a
submeasure on {0, 1}n if

∑

m∈{0,1}n M(m) ≤ 1. Note that every probability measure is a submeasure. We

abuse notation and let M(xi) denote the marginal measure induced on the first i coordinates.
We say a submeasure on {0, 1}n is ǫ-close to k-light if

∑

m∈{s:M(s)>2−k}

M(m) ≤ ǫ.

As usual, for any event A ⊂ {0, 1}n, we denote Pr[M ∈ A] =
∑

m∈A M(m).
We now define the submeasures Mt+1 = X , and for i = t, t − 1, t − 2, . . . , 1,

Mi(m) =

{

0 M i
i+1(m

i) > 2−ki ∨ M i
i+1(m

i) < 2−ni−ℓ

Mi+1(m) otherwise

Let M = M1. Now note that for every j < i, M j
i is ǫj-close to kj-light, since we only made points

lighter in the above process. Further, for all m and i ≤ j, M j
i (mj) ≤ 2−kj , since we reduced the weight of

all m’s that violated this to 0. We also have that for every m, i, M i(mi) = 0 or M i(mi) ≥ 2−ni−ℓ by our
construction.

Now define the sets Bi = {m ∈ {0, 1}n : Mi(m) 6= Mi+1(m)}. Set B = ∪iBi. Then note that Pr[X ∈
B] ≤ ∑t

i=2 Pr[Mi+1 ∈ Bi]. Each Bi, contains two types of points: points that were removed when moving
from Mi+1 to Mi because they were too heavy, and points that were removed because they were too light.
We set Ci = {m : Mi+1(m

i) > 2−ki}, namely the “too heavy” points. We see that Pr[Mi+1 ∈ Ci] ≤ ǫi,
since M i

i+1 is ǫi-close to ki-light. Set Di = {m : Mi+1(m
i) < 2−ni−ℓ}, namely the “too light” points. We
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get Pr[Mi+1 ∈ Di] < 2−ℓ by the union bound. Using both these estimates, we get that Pr[X ∈ B] ≤
∑t

i=1 Pr[Mi+1 ∈ Bi] ≤
∑t

i=1 Pr[Mi+1 ∈ Ci] + Pr[Mi+1 ∈ Di] ≤
∑

i ǫi + t2−ℓ.
Now define the distribution Z = X |X /∈ B. Then Z is

∑

i ǫi+t2−ℓ-close to X . For every i and z ∈ supp(Z),
we have that Pr[Zi = zi|Zi−1 =zi−1] = Pr[Zi = zi]/ Pr[Zi−1 = zi−1] ≤ 2−ki+1/2−ni−1−ℓ (since every point
at most doubles in weight over M), which proves the lemma.

Theorem 4 (Block vs General Source Extractor [BRSW06]). There exists constants c1, c2 such that
for every n, k, with k > log10 n there exists a polynomial time computable function BExt : {0, 1}Cn×{0, 1}n →
{0, 1}m with C = O( log n

log k ) s.t. , if X = X1, · · · , XC is a k-block source and Y is an independent k-source

Pr
x←RX

[|BExt(x, Y ) − Um| < 2−kc1
] > 1 − 2−kc1

,

where m = c2k and Um denotes the uniform distribution on m bit strings.

3 The Extractor

In this section we describe our construction. Our extractor uses as a key component a randomness condenser,
constructed by Guruswami, Umans and Vadhan [GUV07], which is in turn based on recent constructions of
good list decodable codes ([GR06,PV05]), though we give a self contained proof of everything we need in
this section.

First let us give a high level description of our algorithm and analysis. Although it seems hard to build
extractors for two independent sources, the problem seems considerably easier when one of the sources is a
block source. Indeed, our new algorithm will be obtained by reducing to this case. We will give an algorithm
that given two independent sources, can turn them into a single block source, with many blocks. Once we
have this algorithm, we will simply use one additional source and our extractor from Theorem 5.

3.1 Converting Two Independent Sources Into A Block Source

Fix a finite field F. The following algorithm is from [GUV07].

Algorithm 1 (Cond(f, y))

Input: f ∈ F
t+1, y ∈ F and an integer r.

Output: z ∈ F
r.

Sub-Routines and Parameters:
Let g ∈ F[X ] be an irreducible polynomial of degree t + 1. Set h = |F|0.8α for some parameter α.

1. We interpret f as a degree t univariate polynomial with coefficients in F.
2. For every i = 0, 1, . . . , m − 1, let fi ∈ F[x] be the polynomial fhi

mod g.
3. Output f0(y), f1(y), . . . , fr−1(y).

Guruswami et al. were interested in building seeded condensers, so they used the above algorithm with y
sampled uniformly at random. Below, we show that the algorithm above is useful even when y is a high min-
entropy source. We can prove the following lemma, which is a slight generalization of a lemma in [GUV07]:

Lemma 4. Suppose F is a distribution on F
t+1 with min-entropy k and Y is an independent distribution

on F with min-entropy rate α and

– rt < ǫ|F|0.1α

– k > log(2/ǫ) + (0.8αr) log |F|.
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Then Cond(F, Y ) is ǫ-close to .7αr log |F|-light, and hence it is ǫ-close to having min-entropy rate 0.7α.

Remark 1. In order to avoid using too many variables, we have opted to use constants like 0.1 and 0.7 in
the proof. We note that we can easily replace the constants 0.7, 0.8 with constants that are arbitrarily close
to 1, at the price of making 0.1 closer to 0.

Proof (Lemma 4). We will repeatedly use the basic fact that any non-zero polynomial of degree d can have
at most d roots.

By Fact 4, it suffices to prove the lemma when F and Y are flat sources.
We will prove that the output is close to having high min-entropy via Lemma 2. To do this, we need to

show that for every set S ⊂ F
r of size ǫ|F|0.7αr, Pr[Cond(F, Y ) ∈ S] < ǫ. Fix a set S.

Let Q(Z1, . . . , Zr) ∈ F[Z1, . . . , Zr] be a non-zero r variate polynomial whose degree is at most h − 1 in
each variable, such that Q(s) = 0 for every s ∈ S. Such a polynomial must exist since the parameters have
been set up to guarantee hr = |F|0.8αr > |S| = ǫ|F|0.7rα.

Now call f ∈ supp(F ) bad for S if

Pr
y←RY

[Cond(f, y) ∈ S] ≥ ǫ/2

We will bound the number of bad f ’s. Fix any such bad f . Then consider the univariate polynomial

R(X) = Q(f0(X), f1(X), . . . , fr−1(X)) ∈ F[X ]

This polynomial has degree at most tr(h − 1). But tr(h − 1) < ǫ|F|0.1α|F|0.8α < ǫ|F|α/2 = (ǫ/2)|supp(Y )|,
thus this polynomial must be the zero polynomial. In particular, this means that R(X) = 0 mod g(X). This
in turn implies that f must be a root of the polynomial

Q′(Z) = Q(Z, Zh, Zh2

, . . . , Zhr−1

) ∈ (F[X ]/g(X))[Z]

which is a univariate polynomial over the extension field F[X ]/g(X), since Q′(f(X)) = R(X) mod g(X) by
our choice of f0, . . . , fr−1.

Recall that Q had degree at most h−1 in each variable. This means that Q′ has degree at most hr−1 and
is non-zero, since no two monomials can clash when making the substitution Zi for Zi in Q. The number of
bad f ’s can be at most hr − 1 < |F|0.8αr, since every bad f is a root of this low degree non-zero polynomial.
This implies that Pr[F is bad] < |F|0.8αr/2k < ǫ/2, since the constraint on k implies that 2k > |F|0.8αr2/ǫ.

Hence Pr[Cond(F, Y ) ∈ S] ≤ Pr[F is bad] + Pr[Cond(F, Y ) ∈ S|F is not bad] < ǫ/2 + ǫ/2 = ǫ.

Note that a seeded condenser corresponds to the special case of α = 1 in the above lemma. When α
is small, it seems like the lemma doesn’t say anything useful, since the min-entropy rate of the output is
bounded above by α. But note that the lemma works for a very wide range of r’s. The above function is
more than a condenser, it spreads the entropy out across the output. Specifically, if we look at the first r′

symbols in the output, they must also have min-entropy rate close to 0.7α. We can use this to construct a
block source with geometrically increasing block lengths, as in the following lemma:

Lemma 5. Let Cond, F, Y, α, r, t, ǫ be as in Algorithm 6 and Lemma 4. Let r1, r2, . . . , rC = r be positive
integers. For i = 1, 2, . . . , C, set Zi to be the first ri field elements in the output of Cond(F, Y ). Then let
Z1, . . . , ZC be such that Zi = Z1, . . . , Zi for every i. Then for every ℓ > 10 logC we have that Z1, Z2, . . . , ZC

is C(ǫ + 2−ℓ)-close to a block source with entropy (0.7αri − ri−1) log(|F|) − 1 − ℓ in each block.

Proof. We will apply Lemma 3.
Note that for each i, Zi is simply the output of the condenser upto the first ri elements. Since ri ≤ r, ri

satisfies the constraints of Lemma 4, so Zi is ǫ-close to 0.7α|Zi|-light.

We set parameters to get the following theorem:
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Theorem 5. There exists a polynomial time computable function BlockConvert : {0, 1}n1 × {0, 1}n2 →
{0, 1}m1 × {0, 1}m2 × · · · × {0, 1}mC, such that for every min-entropy k1 source X over {0, 1}n1 and every
min-entropy k2 source Y over {0, 1}n2 satisfying

– C(log 10n2

k2
) + 2 log(n1) < 0.095k2

–
√

k1 > k2(10n2/k2)
C,

BlockConvert(X, Y ) is C(2−Ω(k2) + 2−k
Ω(1)
1 )-close to a block source with

∑

i mi ≤ (10n2/k2)
C
√

k1 and min-
entropy 2

√
k1 in each block.

Proof. We show how to set parameters and apply Lemma 5.

Set F to be the finite field of size 2n2 . Set t = n1/n2, ǫ = 2−0.05k2 and k = k1. Set α = k2/n2.

Set ri = (10n2/k2)
i
√

k1, so
∑

i mi = r = k
1/2
1 (10n2/k2)

C.

Using the first assumption,

rt =
√

k1

(

10n2

k2

)C
n1

n2
≤ n2

1

(

10n2

k2

)C

< 20.095k2 = 2−0.05k220.1k2 = ǫ|F|0.1α

to satisfy the first constraint of Lemma 4.

We have that

k1 = k > 1 + 0.05k2 + 0.8 · 10Ck2

√

k1(n2/k2)
C = log(2/ǫ) + (0.8rα) log(|F|)

to satisfy the second constraint of Lemma 4.

Set ℓ = k0.1
1 . Note that the second constraint implies that C < log k1.

Then let us use the algorithm Cond as promised by Lemma 5 with the above settings. We get that the

final output is C(ǫ + 2−ℓ+1) ≤ C(2−Ω(k2) + 2−k
Ω(1)
1 )- close to a block source with min-entropy (0.7αri −

ri−1) log(|F|) − 1 − 2ℓ in each block. We can lower bound this as follows:

(0.7αri − ri−1) log(|F|) − 1 − 2ℓ

=

(

0.7
k2

n2

(

10n2

k2

)i
√

k1 −
(

10n2

k2

)i−1
√

k1

)

n2 − 1 − 2k0.1
1

= (0.7 · 10 − 1)

(

10n2

k2

)i−1

n2

√

k1 − 1 − 2k0.1
1

= 6

(

10n2

k2

)i−1

n2

√

k1 − (1 + 2k0.1
1 )

≥ 2
√

k1

3.2 Putting it all together

All that remains is to put together the various components to get our extractor.
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Algorithm 2 (IExt(a, b, c))

Input: a ∈ {0, 1}n1, b ∈ {0, 1}n2, c ∈ {0, 1}n3.
Output: z ∈ {0, 1}m for a parameter m that we will set.

Sub-Routines and Parameters:
Let BlockConvert be the algorithm promised by Theorem 7, set up to operate on two sources with entropy
k1, k2 and lengths n1, n2 respectively.
Let BExt be the algorithm promised by Theorem 5, set up to extract from a block source with C blocks
of length (10n2/k2)

C
√

k1, each with entropy
√

k1 conditioned on previous blocks, and an independent
source with length n3 and min-entropy k3.

1. Run BlockConvert(a, b) to get the blocks x = x1, x2, . . . , xC.
2. Output BExt(x, c).

We can now prove the main theorem.

Proof (Theorem 1). Let t be a constant so that BExt requires C = t log(n1 + n3)/ log(k1) blocks to extract
bits from an (n3, k3 =

√
k1) source and an independent block source with blocks of length n1, each with

entropy
√

k1 conditioned on previous blocks. The error of this extractor is promised to be 2−k
Ω(1)
1 .

We check each of the constraints needed for BlockConvert to succeed.
First we have that

C

(

log
10n2

k2

)

+ log n1

< C10 logn2 + log n1

≤ 10t
log(n1 + n3)

log k1
log n2 + log n1

≤ (10t/d) log k1 + log n1 by the first assumption

< 0.095d logn1 for d large enough

< 0.095k2 by the second assumption

For the next constraint,

log(k2(10n2/k2)
C)

= C log(10n2/k2) + log k2

≤ t
log(n1 + n3)

log k1
(log(n2) + log 10) + log n2

< 3(t/d) log k1 by the first assumption

< (1/2) log k1 for d large enough

We are not yet done, since the algorithm above will only output m1 =
√

k1 − o(
√

k1) bits. However, we
do have that:

Pr
x1←RX1

[|IExt(x1, Y, Z) − Um1 | > 2−Ω(k2) + 2−k
Ω(1)
1 ] < 2−Ω(k2) + 2−k

Ω(1)
1

since BExt is strong.

Thus we have that |X, IExt(X, Y, Z) − X, Um1 | < 2−Ω(k2) + 2−k
Ω(1)
1 , which implies that if Ext is any

strong seeded extractor set up to extract from a min-entropy k1 source with seed length m2, Ext(X, Um1) is

2−Ω(k2) + 2−k
Ω(1)
1 close to Ext(X, IExt(X, Y, Z)). This is our final extractor.

8



3.3 Extension to Block Sources

We now sketch the proofs of Theorems Theorem 2 and Theorem 3.
For Theorem 2, our block source will be (b, c), and our extractor will be IExt(a, b, c). We will show that

BlockConvert is strong in the sense that with high probability, even conditioned on b, BlockConvert(X, b) will
be a block source. The proof then proceeds as before.

The following lemma shows that any condenser with good parameters is also strong, with slightly weaker
parameters.

Lemma 6. Let X denote a collection of sources. Suppose the function C is a condenser in that for inde-
pendent X ∈ X and Y with H∞(Y ) ≥ ℓ, C(X, Y ) is ǫ-close to k-light. Then for any such X, Y , when y is
chosen from Y ,

Pr
y

[C(X, y) is δ-close to (k − ℓ)-light] ≥ 1 − ǫ/δ.

Proof. Fix any such X and Y . Let S = {z|Pr[C(X, Y ) = z] > 2−k} denote the set of heavy elements. Note
that for any y in the support of Y and z /∈ S, Pr[C(X, y) = z] ≤ 2ℓ−k. Now let py = Pr[C(X, y) ∈ S]. Then
E[py] ≤ ǫ, so by Markov Pr[py ≥ δ] ≤ ǫ/δ, which gives the lemma.

We will use this lemma with the condenser Cond and with δ =
√

ǫ. We then modify Lemma 5 so that
with high probability over the choice of y, Cond(F, y) is a block source. This immediately yields a strong
version of Theorem 7.

Theorem 6. There exists a polynomial time computable function BlockConvert : {0, 1}n1 × {0, 1}n2 →
{0, 1}m1 × {0, 1}m2 × · · · × {0, 1}mC, such that for every min-entropy k1 source X over {0, 1}n1 and every
min-entropy k2 source Y over {0, 1}n2 satisfying

– C(log 10n2

k2
) + 2 log(n1) < 0.095k2

–
√

k1 > k2(10n2/k2)
C,

the following holds. When y is chosen according to Y , with probability 1−C(2−Ω(k2)+2−k
Ω(1)
1 ), BlockConvert(X, y)

is C(2−Ω(k2) + 2−k
Ω(1)
1 )-close to a block source with

∑

i mi ≤ (10n2/k2)
C
√

k1 and min-entropy 2
√

k1 in each
block.

Now, when we analyze IExt(a, b, c) where (b, c) is a block source, we argue that with high probability over
the choice of b, we are in the same situation as before, and our proof continues in the same manner.

For Theorem 3, our block source will be (a, b), and our extractor will be IExt(a, b, c). In the analysis of
Cond(f, y), we analyzed a bad f by counting the number of y that cause Cond(f, y) ∈ S. The key observation
is that this analysis remains unchanged if we choose y from a set Y that depends on f . This is easily verified
by looking at the proof of Lemma 4. Hence (f, y) can be from a block source.
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