Error Detection and Correction

Outline for Today

1. Exclusive-or operation (XOR, \oplus)
 - Definition
 - Some interesting applications
 - Hamming Distance
Exclusive Or

For boolean variables p and q, we use 0 for false and 1 for true.

Definition: For boolean variables p and q, the exclusive or of p and q, denoted $p \oplus q$, is defined by:

<table>
<thead>
<tr>
<th>\oplus</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

For same length bit strings x, y (called **words**), we apply the operation bitwise. So suppose that $x = x_1x_2...x_n$, and $y = y_1y_2...y_n$, where for every i, x_i and y_i are bits. Then $z = x \oplus y$, where $z = z_1...z_n$, and $z_i = x_i \oplus y_i$.

Definition: Let x be a bit string. Then \overline{x} is the complement of x, in which every bit is flipped compared to x. That is, if $x = x_1x_2...x_n$, then $\overline{x} = y_1y_2...y_n$, where for every i, $y_i = 1$ if $x_i = 0$, and $y_i = 0$ if $x_i = 1$.
Basic Properties of \oplus

1. **Commutativity**: $x \oplus y = y \oplus x$

2. **Associativity**: $(x \oplus y) \oplus z = x \oplus (y \oplus z)$

3. **Identity**: Let 0 represent the bit string with all 0 entries. Then for any bit string x, $x \oplus 0 = x$.

4. **Complement**: Let 1 represent the bit string with all 1 entries. Then $x \oplus 1 = \overline{x}$.

5. **Inverse**: $x \oplus x = 0$ and $x \oplus \overline{x} = 1$.
Applying \oplus to Non-negative Integers

- Convert each operand to binary
- Add leading zeros as needed to make the bit strings the same length
- Apply the \oplus operation to the two bit strings/words
- Convert the result to the corresponding non-negative integer
Small Applications of ⊕

- bit selection
- toggling
- exchange
- storage for doubly-linked lists

More detailed discussion of these: course pack
Selecting a Bit

Problem: Given three boolean variables \(x, y \) and \(u \), compute \(w \) such that \(w = x \) if \(u = 0 \) and \(w = y \) if \(u = 1 \).

Solution: Set \(w = ((x \oplus y) \land u) \oplus x \)

Proof: in-class exercise

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>u</th>
<th>(x \oplus y)</th>
<th>((x \oplus y) \land u)</th>
<th>(((x \oplus y) \land u) \oplus x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Forming a Word by Selecting Bits from Two Words

Now we extend the bit selection idea to words.

Suppose that x, y and u are words (same length bit strings). We want to define a word w such that, for every i,

$w_i = x_i$ if $u_i = 0$, and
$w_i = y_i$ if $u_i = 1$.

Since we apply \oplus and \land bitwise when we apply them to bit strings, it follows from our previous proof that:

$w = ((x \oplus y) \land u) \oplus x$.

Example: Let $x = 10110$ and $y = 01011$, and set $u = 00110$. What is w?
Toggling a Boolean Variable

Goal: Given two boolean variables p and q, write a single assignment statement that *toggles* the value of another boolean variable x between p and q.

- If $x = p$, then the assignment statement should set x to q
- If $x = q$, then the assignment statement should set x to p

Solution: Assume that x is either equal to p or q. Our assignment statement is $x = x \oplus (p \oplus q)$.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>x</th>
<th>$p \oplus q$</th>
<th>$x \oplus (p \oplus q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Exercise: complete truth table to verify that the assignment statement is correct.
Word Toggling

For two words \(p \) and \(q \), we want an assignment statement that toggles a variable \(x \) between \(p \) and \(q \).

- If \(x = p \), then the assignment statement should set \(x \) to \(q \)
- If \(x = q \), then the assignment statement should set \(x \) to \(p \)

In our previous proof, we showed (bit by bit) that the assignment statement \(x = x \oplus (p \oplus q) \) toggles between \(p \) and \(q \), assuming that \(x \) is initially either \(p \) or \(q \).
Exchanging Values of Two Boolean Variables

Problem: Swap the values of two boolean variables x and y without using a temporary variable.

Solution: Use the following 3 assignment statements:

$x = x \oplus y$
$y = x \oplus y$
$x = x \oplus y$

Proof: Suppose that initially $x = R$ and $y = S$. We need to show that after the 3 assignment statements, $x = S$ and $y = R$.

After the first assignment, $x = R \oplus S$. After the second assignment,

$y = (R \oplus S) \oplus S$

$= R \oplus (S \oplus S)$ by associativity

$= R \oplus 0$ by inverse property

$= R$ by identity property.

After the 3rd assignment, $x = (R \oplus S) \oplus R = S$ by the associativity and inverse properties. \square
Exchanging Values of Two Words

Problem: Swap the values of two words x and y without using a temporary variable.

Since \oplus is a bitwise operator, our proof on the previous slide works, and the following assignment statements work:

$x = x \oplus y$

$y = x \oplus y$

$x = x \oplus y$

$y = x \oplus y$

Question: What happens if x and y are two references to the same memory location?
Doubly-Linked Lists

Avoid clever tricks like the plague!
–Edsger Dijkstra

Goal: Instead of storing two pointers, a left pointer and a right pointer, only store one value.

Trick: Only store the XOR of the left and right pointers.

- Works if you are arriving at a node from one of the neighbors
- Won’t work if you are using an outside pointer to a node

Question: Why does it work??
Hamming Distance

Definition: The Hamming distance between two words x and y is the number of 1s in $x \oplus y$.

Note: You can also think of the Hamming distance as the number of bit flips needed to change x into y.

Definition: A distance function $d : S \times S \to \mathbb{R}$ is **metric** if it satisfies the following properties:

- **Non-negativity:** $\forall x \forall y d(x, y) \geq 0$
- **Distinctness:** $\forall x \forall y d(x, y) = 0$ if $f x = y$
- **Symmetric:** $\forall x \forall y d(x, y) = d(y, x)$
- **Triangle inequality:** $\forall x \forall y \forall z d(x, y) + d(y, z) \geq d(x, z)$

Definition: A **metric space** is a set S with an associated metric distance function d.
Hamming Distance

Claim: For any non-negative integer k, Hamming distance defines a metric distance function over the set of all words of length k.

Lemma: Let (S, d) be a metric space. Let $k \in \mathbb{N}$, and let $d'(x, y) = \sum_{1 \leq i \leq k} d(x_i, y_i)$, for all $x = (x_1, x_2, \ldots, x_k)$ and $y = (y_1, \ldots, y_k)$ in S^k. Then (S^k, d') is a metric space also.

Proof: Exercise
Hamming Distance is Metric

Theorem: For any non-negative integer k, Hamming distance defines a metric distance function over the set of all words of length k.

By our lemma, all we need to prove is that Hamming distance defines a metric space over \{0, 1\}, the set of all words of length 1.

But this is easy (exercise).