Knapsack

You are robbing a store.
Store has \(n \) items, each with a
weight \(W_i \) pounds
& value \(V_i \) dollars

You can carry up to \(C \) pounds.
What is the maximum total value you can take?

\[
f(K, W) := \text{maximum value using the first } K \text{ items & } \leq W \text{ total weight.}
\]

\[
f(0, W) = 0 \text{ if } W > 0
\]

\[
f(K, w) = \max \left\{ \begin{array}{l}
f(K-1, w) \quad \text{don't take item } K \\
\min \left\{ f(K-1, w-W_i) + V_i \quad \text{if } w \geq W_i \right\} \quad \text{do take item } K
\end{array} \right.
\]

\(O(nC) \) space & time
Knapsack Variants

Above is "0-1" Knapsack.

- infinite multiplicity: can take many copies of each item.

\[
f(k, w) = \max \left(\begin{array}{c}
f(k-1, w) \quad \text{< don't take item } k \\
f(k, w-w_i) + v_i \quad \text{< if } w \geq w_i \\
\text{< do take item } k \\
\text{< can still reuse it}
\end{array} \right)
\]

\[
f(w) = \text{opt. for weight } w \text{ w/all n items:}
\]

\[
f(w) = \max (0, \max_{i \in [n]} f(w-w_i) + v_i)
\]

\[O(C) \text{ space, } O(nC) \text{ time.}\]

- high multiplicity:

 each item usable \(\leq k_i \) times

 Easy: \(O(C \cdot \max k_i) \)

 Straightforward: \(O(C \cdot \sum \frac{1}{k_i}) \)

 Tricky: \(O(nC) \)
- **Sliding Window**

 For regular knapsack, get \(O(nC) \) space, \(O(nC) \) time.

 Each column only depends on previous column

 \(\Rightarrow \) only need to track two columns

 \(f(k \mod 2, w) \)

 [Implementation trick: one column, scan down]

 \(\Rightarrow O(nC) \) time, \(O(C) \) space

Issue: gives solution value but not solution

[would want the back pointers, which take \(nC \) space...]

Trick:

- Solution path
- Back pointer to location of path on column \(n/2 \)

Instead of full \(nC \) back pointers, only store pointer to where the path was at column \(n/2 \).

This can be kept in sliding window \(\Rightarrow O(C) \) space.
This finds one point on optimal path in \(O(nC) \) time, \(O(C) \) space.

Call it \(w_{\frac{n}{2}} \).

Then

\[
\text{Path}(\varepsilon_1, \ldots, n_2, C) = \text{Path}(\varepsilon_1, \ldots, \frac{n_2}{2}, w_{\frac{n}{2}}) + \left(\frac{n_2}{2}, w_{\frac{n}{2}} \right) + \text{Path}(\frac{n_2}{2}+1, \ldots, n_2, C - w_{\frac{n}{2}})
\]

\[
T(n, C) = nC + T(\frac{n}{2}, w_{\frac{n}{2}}) + T(\frac{n}{2}, C - w_{\frac{n}{2}})
\]

Total area remaining is \(\frac{nC}{2} \),

\(\Rightarrow \) \(O(nC) \) time.

Note
Knapasck is **not** polynomial time

because \(C \) can be very large.

(Think: 64-bit integers \(\Rightarrow n \cdot 2^{64} \))

Only fast if \(W_i \) small

(or: \(v_i \) small & \(W_i \) large, by

\(f(k, v) = \min \) weight for given value

instead of \(F(k, v) = \max \) value for given weight

)