Interval Scheduling

Most basic version:

Given a set of N intervals:

![Diagram of intervals]

Each defined by a start time S_i and finish time F_i.

(think: people that want to rent your house).

What is the maximum number of disjoint intervals you can pick?

That is, find

$$S \subseteq [N] \text{ maximizing } |S|$$

such that

$$[S_i, F_i) \cap [S_j, F_j) = \emptyset \quad \forall i, j \in S, \; i \neq j$$

The example has 4.
Many plausible greedy algorithms.

Shortest first?

Interval w/ fewest overlaps first?

First come first serve?

Earliest finish time?

YES

but needs a proof to show it's different from the above fallacious arguments.
Greedy Schedule \(\mathcal{I} \) :

\[I = \{ (s, f) \mid s \in \mathbb{N} \} \]

Sort \(\mathcal{I} \) by increasing \(f \).

\[S = \emptyset \]

\[t = -\infty \]

For \((s, f) \) in \(\mathcal{I} \):

if \(s < t \) : continue

\[t = f \]

\[S.\text{append}((s, f)) \]

Return \(S \).

Theorem. Greedy Schedule returns a valid set of intervals of maximum size.

Proof. Because \(s \leq f \) for every interval, \(t \) never decreases. Therefore \(t \) is always the largest \(f \) in \(S \). This ensures each new interval added to \(S \) does not overlap with any interval already in \(S \), so the returned \(S \) is valid.

We now prove by induction on \(n \) that the returned \(S \) has maximal size.

The base case of \(n = 0 \) is trivial. Now consider some \(n \geq 1 \), and assume the theorem holds for all \(I' \) with \(|I'| \leq n-1 \).

For any time \(t \), define \(I_+ = \{ (s, f) \in I \mid s > t \} \).

Notice that, if \((s, f) \) has the earliest finish time in \(I_+ \), then

\[\text{Greedy Schedule (I)} = I_+ \cup \text{Greedy Schedule (I_+)} \]
Let \mathcal{S} be a maximum disjoint subset of \mathcal{I}_F which we can write out in order as

$$\mathcal{S} = \{(s_1, f_1^*), (s_2, f_2^*), \ldots, (s_k^*, f_k^*)\}$$

For $k^* = |\mathcal{S}|$. Similarly, \textit{GreedySchedule} returns a \mathcal{S} with

$$\mathcal{S} = \{(s_1, f_1), (s_2, f_2), \ldots, (s_k, f_k)\}$$

for $k := |\mathcal{S}|$. We claim $k = k^*$.

Since f_1 is the earliest possible finish time,

$$f_1 \leq f^*_1 \leq s_2^*.$$

Therefore (s_2^*, f_2^*), \ldots, (s_k^*, f_k^*) all lie in \mathcal{I}_{f_1}. Since these are disjoint, the optimal solution for \mathcal{I}_{f_1} has at least $k^* - 1$ intervals.

By the inductive hypothesis, this means

$$|\text{GreedySchedule}(\mathcal{I}_{f_1})| \geq k^* - 1$$

so $k = |\text{GreedySchedule}(\mathcal{I})| \geq k^*$. Since k^* is the maximum possible, $k = k^*$ as desired.

So: $O(n \log n)$ sort + $O(n)$ time.
Weighted interval Scheduling

Each interval now has a weight \(w_i \).

Maximize \(\sum_{i \in S} w_i \)

over sets of disjoint intervals.

Naive recursion:

\[
\text{Sched}(I)
\]

Let \(i = \text{first elt of I} \)

Return \(\min \) of

not chosen: \(\text{Sched}(I \setminus i) \),

chosen: \(\text{Sched}(I \setminus \frac{i}{3} \text{ or anything conflicting with } i \setminus 3) + w_i \).

Problem: \(2^n \) possible inputs.

Solution: If I sorted by \(f_3 \), then only \(n+1 \) inputs ever happen:

(suffix of \(I \) sorted by \(s_1 \)).

\(\Rightarrow \) memoized time is \(n \cdot (\text{time per input}) \).

\[n^2 \text{ naively} \]

\[n \text{ more carefully} \]

\(\text{Sched} \) (index in \(I \), \(f \) or last chosen)