Introduction to graph algorithms

Graph \(G = (V, E) \)

\[V = \text{Set of vertices} = \# \text{vertices} \]
\[E = \text{Set of edges} = \# \text{edges} \]

\[E \leq \binom{V}{2} \quad \text{(undirected)} \]
\[\leq V(V-1) \quad \text{(directed)} \]

Basic Question: Reachability

Given \(S, T \) find if \(S \rightarrow T \) path exists
(maybe: \& return path)

\[\text{visited} = \mathbb{E}^3 \]

\begin{algorithm}
\text{def } \text{DFS}(v):
\begin{algorithmic}
 \State \text{if } v \text{ in visited: return False}
 \State visited.add(v)
 \If {v == t} \Return True
 \For {w in v.adj:}
 \If {DFS(w): return True}
 \EndFor
 \EndIf
\EndIf
\end{algorithmic}
\end{algorithm}
def BFS(s, t):
 Q = queue([s])
 visited = set()
 while Q:
 v = Q.pop_front()
 if v in visited: continue
 visited.add(v)
 if v == t:
 return True
 for w in v.adj:
 Q.push_back(w)
 return False

BFS: queue
DFS: stack

min. spanning tree: heap/priority queue (Prim's Algorithm)
shortest paths: priority queue on different weights (Dijkstra's Alg)

Claim: whatever the pop() used, the whatever first search returns True \iff \exists \text{ path}.
add parent pointers to alg:

```python
def BFS(s, t):
    Q = queue([s, None])
    Parent = {}
    while Q:
        v, p = Q. pop_front()
        if v in Parent: continue
        Parent[v] = p
        if v == t: return True
        for w in v. adj:
            Q. push_back((w, v))
    return False
```

Consider the chain:

\[t \rightarrow Parent[t] \rightarrow Parent[Parent[t]] \rightarrow \ldots \]

Except for \((s, \text{None}) \), every \((v, \text{Parent}(v))\) pair has a corresponding \(\text{Parent}[v] \rightarrow v\) edge in \(E\).

Thus the chain either ends at \(s\) or in a loop.

Every step of this chain moves to a vertex visited earlier in the execution, so it must terminate; hence it (backwards) would be an \(s \rightarrow t\) path.
Pf (\subseteq) Suppose returns false, but \exists path.

Then \exists u visited, v not visited, u v exists.

u \neq t, when u visited, (v, u) added to Q

\implies v would be visited before Q empty, \implies \subseteq.

BFS: Return path w/ fewest steps
Exercises

1) Road networks: weights = max height of trucks taking road
 \(l = \min \) height of bridges

 Q1: tallest truck that can go \(S \rightarrow T \)?

 Q2: can go between any pair of locations?

2) Floodfill: MS Paint