Fibonacci Numbers

\[F_0 = 0, \quad F_1 = 1 \]
\[F_n = F_{n-1} + F_{n-2}. \]

How quickly can we compute the \(n^{th} \) Fibonacci number?

Naive recursion:

```
def f(n):
    if n <= 1: return n
    return f(n-1) + f(n-2)
```

Computation graph:

More compact view:

"state" \(n \)
\[
\begin{array}{c}
0 & 1 & 2 & 3 & \cdots & n-1 & n \\
\end{array}
\]

\[
\begin{array}{c}
f(n) \\
0 & 1 & 1 & 2 & 3 & 5 & F_{n-3} & F_{n-2} & F_{n-1} & F_n
\end{array}
\]
Returns to $F(1)$ again and again

\[T(n) = T(n-1) + T(n-2) + \text{Something} \geq 1 \]

\[\Rightarrow T(n) \geq F_n > 2^{n/2} \approx 1.6^n \]

How can we avoid this repetition?

Only compute each F_i once.

\[f(1) \rightarrow f(2) \rightarrow f(3) \rightarrow \ldots \rightarrow f(n) \]

$f(3)$ never changes. Can store the answer.

In this view: compute node (= "state" = "input") once.
Dynamic Programming (DP)

"top-down"
Memorization: Keep a record of each answer you compute. Before recursion, check the memo.

"bottom-up" DP: Compute answers low -> high.

```python
def fib(n):
    fibs = [0, 1]
    for i in range(2, n+1):
        fibs.append(fibs[i-1] + fibs[i-2])
    return fibs[n]
```

Time: $O(n)$
Space: $O(n)$

"sliding window" DP:

```python
def fib(n):
    a, b = 0, 1
    for i in range(2, n+1):
        a, b = b, a+b
    return b
```

Time: $O(n)$
Space: $O(1)$
Matrix Exponentiation Method.

Can view each step of the sliding window method as a matrix multiply.

\[
\begin{bmatrix}
 a \\
 b
\end{bmatrix} = \begin{bmatrix}
 0 & 1 \\
 1 & 1
\end{bmatrix} \begin{bmatrix}
 a \\
 b
\end{bmatrix}
\]

The final \[\begin{bmatrix}
 a \\
 b
\end{bmatrix} \] is thus \[\begin{bmatrix}
 0 & 1 \\
 1 & 1
\end{bmatrix} \begin{bmatrix}
 0 \\
 1
\end{bmatrix} \]

\[\begin{bmatrix}
 0 & 1 \\
 1 & 1
\end{bmatrix}^2 = \begin{bmatrix}
 1 & 1 \\
 1 & 2
\end{bmatrix}, \quad \begin{bmatrix}
 0 & 1 \\
 1 & 1
\end{bmatrix}^3 = \begin{bmatrix}
 1 & 2 \\
 2 & 3
\end{bmatrix}, \quad \begin{bmatrix}
 0 & 1 \\
 1 & 1
\end{bmatrix}^{n-1}
\]

\[F_n = \text{bottom right of } \begin{bmatrix}
 0 & 1 \\
 1 & 1
\end{bmatrix}^{n-1}. \]

How quickly can we compute \[A^n \] for a 2x2 matrix \[A. \]

Repeated Squaring:

First compute \[A, A^2, A^4 = (A^2)^2, A^8 = (A^4)^2 \].

Up to \[A^{2^k} \] for \[k = \lfloor \log_2 n \rfloor \].

Express \[n \] in base 2:

\[n = \sum_{i=0}^{K} a_i \cdot 2^i \]

Then \[A^n = (\sum_{i=0}^{K} a_i \cdot 2^i) = \prod_{i=0}^{K} A^{a_i \cdot 2^i} = \prod_{i:a_i = 1} A^{2^i} \].
Example:

Suppose \(N = \underbrace{1011011}_{12} \) in \(K \) bits.

Then \(A^{45} = A^8 \cdot A^8 \cdot A^4 \cdot A \).

Total time = \(O(\log n) \) \(2 \times 2 \) matrix multiplications = \(O(\log n) \).

Easy to implement these algorithms benchmark time.
All the preceding time/space bounds are wrong.

Because the numbers get big.

\[F_n \approx 1.6^n \] takes \(\Theta(n) \) bits to store.

\[\text{DP: } \prod_{i=1}^{n} n = \sqrt[n]{\Theta(n^2) \cdot \text{time}} \]

Matrix multiplication:

the \(2^{k+1} \) step involves multiplying \(\Theta(2^k) \)-bit numbers.

Then Fibonacci has

\[T(n) = T\left(\frac{n}{2}\right) + (\text{multiplication time for } n \text{ bits}) \]

\[= \Theta(\text{multiplication time for } n \text{ bits}) \]

Elementary: \(\Theta(n^2) \)

Karatsuba: \(\Theta(n \log_2 3) \)

For the rest of this course, avoid this issue.

- Only deal with numbers bounded by \(n^{O(1)} \)

- Assume computer can manipulate such numbers in \(O(1) \) time

\[\text{[64-bit word size, } n < 2^{64}] \]
Questions:

How many paths, moving only up and right?

Now?

Catalan numbers: # valid parentheses of length \(n \)

Delannoy: # paths \((0, 0)\) to \((n, m)\) up, right, or up right \((E_2)\)

Schroder number: Delannoy \((n, m)\) & validly parenthesized

In general: # S-out paths on a DAG