
Problem Set 3

CS 331H

Due Tuesday, March 8

1. Consider a weighted, directed graph where all distances lie in [1, 2).

(a) Show that a variant of BFS computes single source shortest paths
in O(m) time.

(b) Extend your result to O(mC) time and O(m + C) space for dis-
tances in [1, C) for any C > 1.

2. You have n power plants which, being fancy modern renewable energy
designs, do not work all the time (they depend on sun, wind, tides,
etc). Each power plant runs from a start time si to a finish time fi,
and costs ci to run (you either run it the whole time or no time). You
would like to find a set of power plants to run such that you have power
over the entire interval [0, T]. What is the minimum cost achievable?

You may suppose that the si and fi are integers between 0 and T =
O(n).

(a) Give an O(n log n) algorithm for this problem.

(b) Now suppose that you can sell off extra power if you have more
than one power plant running at a time. At each time step t ∈ [T],
each power plant beyond the first that you run gives you value
vt ≥ 0 of benefit. Give an O(n log n) algorithm for this problem.

In this part you may assume that the cost ci to run a power plant
is larger than the value of the electricity it produces,

∑fi
t=si

vt.

(c) Now solve the previous part without assuming that the cost to run
a power plant is larger than the value of the electricity it produces.

3. Given a weighted, undirected graph with nonnegative weights, a source
s, and a sink t, find the shortest path from s to t and back to s that
uses each edge at most once. Aim for O(m+ n log n) time.

4. In this problem, we’re going to examine the results of using A∗ with
different potential functions. Download the code from the course web-
site. It uses Python and requires numpy (version 1.8 or higher) and

1

Figure 1: The top left gives the problem instance: shortest paths from the
green dot to the red dot. The other plots give the result of running A∗ with
different potentials. The thick path is the shortest path found; the nodes are
the nodes visited; the thin edges are the edges examined, with the edges in
the shortest path tree slightly darker.

matplotlib. The program creates a bunch of nodes placed in a square,
and links each node to nearby ones, with `2 distance as the distance. It
then picks an s and t and computes the shortest s-t path using A∗ and
various potential functions. If you run the program, you should see a
result like Figure 1, and it should print out the computed distance.

Play around with different potential functions and different size graphs,
getting familiar with the program. Then:

(a) If you run the program several times, one of the printed distances
will often not match the other two. Why is that?

2

(b) How do the number of nodes/edges visited compare for the various
potentials?

(c) Now, implement the ALT algorithm. The ALT algorithm stands
for “A∗, landmarks, and triangle inequality”. It’s a way of pre-
processing the graph to construct a potential function such that
fresh queries—new s and t pairs—can be solved very efficiently.

The idea is to choose a small number nodes l1, . . . , lL to be “land-
marks” (say, 10-20). We preprocess the graph using full Dijkstra
to compute dist(u, li) for all vertices u and landmarks li.

On a new query s, t, we observe by the triangle inequality that

dist(u, t) ≥ dist(u, li)− dist(t, li)

and
dist(u, t) ≥ dist(li, t)− dist(li, u)

for all landmarks li. Hence, if we set

φ(u) := max
i
|dist(u, li)− dist(t, li)|

we get an admissible heuristic (where we simplified slightly by
using that distances are symmetric).

i. Show that φ is in fact consistent (i.e. φ(u)−φ(v) ≤ dist(u, v)
for all u, v).

ii. Implement the ALT heuristic. With 20 landmarks, it should
usually visit less than 1/3 as many nodes as the `2 heuristic.
(You can either choose random landmarks or try to pick them
more carefully.)
Print out the resulting graph, comparing the nodes picked by
`2 and ALT. Also include the number of nodes visited by each
in several sample runs.

3

