Problem Set 3

CS 331H
Due Tuesday, March 8

1. Consider a weighted, directed graph where all distances lie in [1, 2).

(a) Show that a variant of BF'S computes single source shortest paths
in O(m) time.

(b) Extend your result to O(mC') time and O(m + C') space for dis-
tances in [1,C) for any C' > 1.

2. You have n power plants which, being fancy modern renewable energy
designs, do not work all the time (they depend on sun, wind, tides,
etc). Each power plant runs from a start time s; to a finish time f;,
and costs ¢; to run (you either run it the whole time or no time). You
would like to find a set of power plants to run such that you have power
over the entire interval [0, 7]. What is the minimum cost achievable?

You may suppose that the s; and f; are integers between 0 and 17" =

O(n).

(a) Give an O(nlogn) algorithm for this problem.

(b) Now suppose that you can sell off extra power if you have more
than one power plant running at a time. At each time step ¢ € [T,
each power plant beyond the first that you run gives you value
vy > 0 of benefit. Give an O(nlogn) algorithm for this problem.
In this part you may assume that the cost ¢; to run a power plant
is larger than the value of the electricity it produces, Zf;sl Vg

(c) Now solve the previous part without assuming that the cost to run
a power plant is larger than the value of the electricity it produces.

3. Given a weighted, undirected graph with nonnegative weights, a source
s, and a sink ¢, find the shortest path from s to ¢ and back to s that
uses each edge at most once. Aim for O(m + nlogn) time.

4. In this problem, we're going to examine the results of using A* with
different potential functions. Download the code from the course web-
site. It uses Python and requires numpy (version 1.8 or higher) and

1

All nodes in grph ﬂ?uristic = None:regular Dijkstra

0.8
0.6
0.4 eyt
0.2
0.0 - Lhe Fotud Aoy 0.0

00 02 04 06 08 10 00 02 04 06 08 10
10 Heuristic = Euclidean 10 Heuristic = Manhattan
0.8 0.8 -

f
0.6 0.6 .
0.4 0.4F i
0.2} 0.2+
00 | | | | 00 | | | |

00 02 04 06 08 10 00 02 04 06 08 1.0

Figure 1: The top left gives the problem instance: shortest paths from the
green dot to the red dot. The other plots give the result of running A* with
different potentials. The thick path is the shortest path found; the nodes are
the nodes visited; the thin edges are the edges examined, with the edges in
the shortest path tree slightly darker.

matplotlib. The program creates a bunch of nodes placed in a square,
and links each node to nearby ones, with /5 distance as the distance. It
then picks an s and ¢ and computes the shortest s-t path using A* and
various potential functions. If you run the program, you should see a
result like Figure 1, and it should print out the computed distance.

Play around with different potential functions and different size graphs,
getting familiar with the program. Then:

(a) If you run the program several times, one of the printed distances
will often not match the other two. Why is that?

(b)
(c)

How do the number of nodes/edges visited compare for the various
potentials?

Now, implement the ALT algorithm. The ALT algorithm stands
for “A*, landmarks, and triangle inequality”. It’s a way of pre-
processing the graph to construct a potential function such that
fresh queries—new s and t pairs—can be solved very efficiently.
The idea is to choose a small number nodes [y, ..., [, to be “land-
marks” (say, 10-20). We preprocess the graph using full Dijkstra
to compute dist(u, ;) for all vertices v and landmarks [;.

On a new query s,t, we observe by the triangle inequality that
dist(u,t) > dist(u, ;) — dist(¢, ;)

and
dist(u,t) > dist(l;,t) — dist(l;, u)

for all landmarks /;. Hence, if we set

o(u) := max |dist(u, [;) — dist(¢, ;)]
we get an admissible heuristic (where we simplified slightly by
using that distances are symmetric).

i. Show that ¢ is in fact consistent (i.e. ¢p(u)—¢(v) < dist(u,v)
for all u,v).

ii. Implement the ALT heuristic. With 20 landmarks, it should
usually visit less than 1/3 as many nodes as the ¢; heuristic.
(You can either choose random landmarks or try to pick them
more carefully.)

Print out the resulting graph, comparing the nodes picked by
Uy and ALT. Also include the number of nodes visited by each
in several sample runs.

