
Problem Set 1

CS 331H

Due Tuesday, February 14

General rules:

• For full credit, you must give proofs of every step.

• Either typeset your solutions or write in clearly legible handwriting.
The TA will dock points for bad handwriting.

• Collaboration is encouraged, but you must write up the solutions on
your own and acknowledge your collaborators at the top of your solu-
tions.

1. Recursive time bounds: give a big-O bound for T (n) given each of the
following recursive formulas:

(a) T (n) = 3T (n/4) + n log n

(b) T (n) = 2T (n/2) +
√
n

(c) T (n) = 5T (n/4) + n

(d) T (n) = T (2n/3) + T (n/3) + n/6.

with the base case T (1) = 1.

2. In class we discussed interval packing problems. Here we explore inter-
val cover problems.

(a) You are given a set of n intervals [si, fi) and a range [0, T ). You
would like to find a minimal set I ⊂ [n] of intervals whose union
covers the range. That is, we say that I is a valid cover if, for all
t ∈ [0, T ), there exists an i ∈ I such that t ∈ [si, fi). Give a greedy
algorithm to compute a valid cover with the smallest number of
intervals, in linear time after sorting.

(b) Now suppose that each interval also has a cost ci, and your goal is
to find a valid cover I minimizing the total cost

∑
i∈I ci. Give a dy-

namic programming solution to this problem that takes O(n log n)
time.

1



3. Suppose that you have n jobs that you would like to schedule. Each job
takes a different duration of time di > 0 to complete, and a different
“urgency” ui > 0. You can only work on one job at a time, but you
can choose an arbitrary order among the jobs.

For a given order of the jobs, let ti be the time that you finish job i,
which is the sum of the durations of the previous jobs and this one.
Your total cost of a given order is defined as

∑n
i=1 uiti: the more urgent

a job is, the more important it is that it be finished earlier. Your goal
is to find the job order that minimizes the cost.

(a) (No response necessary) Think about this problem on your own
for 10 minutes before reading the spoilers below.

(b) Suppose that n = 2. What order should you take?

(c) Consider any ordering among the jobs for general n, and look at
any pair of adjacent jobs in that ordering. How would the total
cost change if you swap the ordering?

(d) Observe that repeatedly applying the idea in the previous part
would lead to an O(n2) time bubble sort of the jobs, based on
some function f(ui, di) of each element.

(e) Give an O(n log n) time algorithm for the problem.

4. There’s a Jupyter Notebook linked from the class webpage. Run through
it, then answer the questions at the end. Don’t wait till the last day to
do this: setting up the required libraries may take some time.

2


