Problem Set 3

CS 331H
Due Tuesday, March 21

1. You have n power plants which, being fancy modern renewable energy
designs, do not work all the time (they depend on sun, wind, tides,
etc). Each power plant runs from a start time s; to a finish time f;,
and costs ¢; to run (you either run it the whole time or no time). You
would like to find a set of power plants to run such that you have power
over the entire interval [0, 7]. What is the minimum cost achievable?

You may suppose that the s; and f; are integers between 0 and T =

O(n).

(a) Observe that the answer corresponds to the shortest path on an
appropriate graph, which can be solved in O(nlogn) time using
Dijkstra’s algorithm. [You may have already done this on a pre-
vious problem set.]

(b) Now suppose that you can sell off extra power if you have more
than one power plant running at a time. At each time step ¢ € [T,
each power plant beyond the first that you run gives you value
vy > 0, decreasing your costs. Show how to extend the part (a)
graph to handle this case.

Now suppose that the cost ¢; to run a power plant is larger than the
value of the electricity it produces, Zti:si v Show that Dijkstra’s
algorithm will find the solution in O(nlogn) time, by construct-
ing an appropriate potential function so the edge costs become
nonnegative.

(c) [Optional] Now solve the previous part without assuming that the
cost to run a power plant is larger than the value of the electricity
it produces.

2. You are given a three dimensional object. On the horizontal plane it is
an n X n square, and on the vertical axis each square (z,y) is a square
pillar rising to height h,, > 1. Adjacent pillars, even ones sharing
corners, are fused together.



You submerse this object into a bucket of water, then carefully lift it
out. Water will then drain off the sides, but it cannot drain through
pillars. How many units of water will be captured in the object? Give
an O(n?logn) algorithm.

As an example, in the following grid 2 units will be captured, all in the
center tile:

0151]9
71316
7152

Hint: You may use from class that a variant of Dijkstra’s algorithm
can solve the minimax path problem. The shortest path problem is
to find paths minimizing total length > __,c(e); the minimax path
problem is to find paths minimizing the mazimum length max.cp c(e).

. In this problem, we're going to examine the results of using A* with
different potential functions. Download the code from the course web-
site. It uses Python and requires numpy (version 1.8 or higher) and
matplotlib. The program creates a bunch of nodes placed in a square,
and links each node to nearby ones, with /5 distance as the distance. It
then picks an s and ¢ and computes the shortest s-t path using A* and
various potential functions. If you run the program, you should see a
result like Figure 1, and it should print out the computed distance.

Play around with different potential functions and different size graphs,
getting familiar with the program. Then:

(a) If you run the program several times, one of the printed distances
will often not match the other two. Why is that?

(b) How do the number of nodes/edges visited compare for the various
potentials?

(c) Modify the code so that s and t lie in opposite corners of the
square, and see how the results behave.

(d) Now, implement the ALT algorithm. The ALT algorithm stands
for “A*, landmarks, and triangle inequality”. It’s a way of pre-
processing the graph to construct a potential function such that
fresh queries—new s and ¢ pairs—can be solved very efficiently.



All nodes in graph (Dijkstra): 1999 nodes

T 5L

1.0

Tige

0.0 | < T T T
0.0 0.2 0.4 0.8
Heuristic = Euclidean: 240 nodes

S IET L DO A

1.0

1.0

Figure 1: The top left gives the problem instance: shortest paths from the
green dot to the red dot. The other plots give the result of running A* with
different potentials. The thick path is the shortest path found; the nodes are
the nodes visited; the blue nodes are visited, and the edges in the shortest
path are darker.



The idea is to choose a small number nodes [y, ..., [, to be “land-
marks” (say, 10-20). We preprocess the graph using full Dijkstra
to compute dist(u, [;) for all vertices u and landmarks [;.

On a new query s,t, we observe by the triangle inequality that
dist(u, t) > dist(u, l;) — dist(¢, ;)

and
dist(u,t) > dist(l;,t) — dist(l;, u)

for all landmarks /;. Hence, if we set
o(u) := max |dist(u, [;) — dist(¢, ;)]

< d(u,t) for all u).
¢(u) = o(v) < dist(u, v)

we get an admissible heuristic (i.e., ¢(u)
ie.

i. Show that ¢ is in fact consistent (i
for all u,v).

ii. Implement the ALT heuristic. With 20 landmarks, it should
usually visit less than 1/3 as many nodes as the ¢, heuristic.
(You can either choose random landmarks or try to pick them
more carefully.)

Print out the resulting graph, comparing the nodes picked by
l5 and ALT. Also include the number of nodes visited by each
in several sample runs.



