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1 Overview

In this lecture, we study the problem of finding shortest paths. Let G be a graph of m edges and

n vertices. First let’s look at some algorithms.

Algorithm ‘ Sources ‘ Negative Weight ‘ Time

Dijkstra Single No O(m + nlogn)
Floyd-Warshall | All Pairs | Yes O(n?3)
Bellman-Ford | Single Yes O(mn)

Table 1: Comparison of some shortest path algorithms.

The Floyd-Warshall algorithm is very simple:

Data: Distance matrix D
Result: Shortest path matrix D
for k in [n] do
for i in [n] do
for j in [n] do
‘ Dij = min(Dij, Dy + Dk])
end
end
end
Algorithm 1: Floyd-Warshall algorithm

2 Faster algorithm using matrix multiplication

We can have faster algorithms for all pair shortest paths in O(M M (n)) time for unweighted and
undirected graph, where M M (n) is the time to multiply two n X n matrices. Some history of the

matrix multiplication problem:

e Naive: O(n?).
e Strassen ’69: O(n28974),
e Coppersmith & Winograd ’89: O(n237477).

Strothers "10: O(n?37).

Vassilevska-Williams "11: O(n?372873),



e Note that the lower bound for MM is still an open problem.(O(n?)??)
The notation n® is often used in papers since w is being continuously improved.In this lecture,
MM(n) is referred to as n®.

First we observe the similarity between matrix multiplication and FloydWarshal. In fact, matrix
multiplication is FloydWarshal where (min, +) is replaced by (4, x).

Let A be the adjacency matrix, we have that A?j is the number of length 2 path from ¢ to j. More
generally, Aﬁj is the number of length [ path from i to j. If we add the identity matrix to A, which
is equivalent to adding all self-loop in the graph, we have that Aéj number of paths of length <.

A naive way of using matrix multiplication to compute shortest paths is to compute: A, A2, ..., A"
then let D;; = mlin s.t.Aéj > 0. Two problems are O(n**!) time and big number (which can be

easily solve by just storing A’ > 0). Suppose we want a 2-approximation to D;;, which is X;; such
that D;; € [%, X;;]. We can compute A4, A%, A*... in O(M M (n)logn) by repeated squaring.

Now let D’ be the distance on A2, that is the graph with all length 2 paths added as new edges.
D' can be computed recursively. Our goal is to find D from D’ and A in O(M M (n)) time. There
are two cases:

o If Dij is even then ng = Dz]/Q
o If Dij is odd then D;J = (DU + 1)/2

So all we need to do is to find D mod 2 (from D" and A). Consider again two cases:

o If Dyj is even then Yu € N(i), D,; € {Dj;, Dj; + 1}.

o If D;; is odd then Vu € N (i), D;,; € {Dj;, Dj; — 1} and Ju € N(i) s.t. D,; = Dj; — 1.
That is because if the distance from i to j in A is even (2[) then for a neighbor u of ¢ the distance
from u to j can only be 20 — 1,2l or 2] + 1. In A2, the distance from i to j is [ and from u to j is

or l+1 (if D,; =20 — 1 in A then it still takes [ steps from u to j in A%). By a similar argument,
we have the case for D;; odd. By summing over the neighbors, we have:

o If Dj; is even then 3, oy Diyy = D[N (9)].
o If Dj; is odd then 3, n iy Dy < Dy [N ()]
Also, these sums can be expressed as matrix multiplication:
> D=2 AuD (1)
u€N (i) u€[n]
= (AD);; (2)

So we compare AD" to D'|N(i)| to get D;; mod 2 and set D = 2D’ — (D mod 2). Each round
takes n* time and total time is O(n* logn).



3 Identifying shortest paths

Now, given D and A, we want to give an efficient algorithm for finding the shortest paths. For this
lecture, we look at the case of a tripartite graph(Figure 1), with edges going from left to right. Let
A, B be the adjacency matrix for {Vi, Va} and {V4, V3} respectively, then we're interested in finding
P;; = k such that AN Bp;=1in O(n¥) time.
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Figure 1: Tripartite Graph, |V;| =n Vi

Easy Case. Suppose there exists exactly one k* such that A;z« N By«; = 1, then:

e Define A’ such that Aj; = A;;.j
i

e So, we can identify the witness k* for a path in O(n“) time.

Medium Case. Suppose there exist r witnesses {k1,...,k,} such that A;,, N By,; = 1 for all
d € [r], then:

o Define A" such that A}; = A;;.j.0;, where d; is a Bernoulli r.v. such that P[d; = 1] = 1/r.

e Now, if exactly one of the r d, = 1, then (A'B);; = k¢, so, we would have identified a witness.
e Now, P[} 0y, =1]=rt.(1-1r"1x~1/e>1/4.

e So, repeat O(logn) times and each time check result A;;, N By, ; = 1. Hence, the total runtime

is O(n* log(n)).

Hard Case. If we don’t know the number of witnesses r, then:

e Naive Strategy. Run medium-case strategy for all » = 1,...,n. However, then runtime is
O(n®“.log(n).n.

e Run medium-case strategy for all = 1,2,4, ..., n. For this stragy, runtime is O(n®“.log(n).log(n).



e To analyse it’s correctness: Suppose r :true number of witnesses, and let 7’ be our guess such
that /2 <r <1’

1 1
Plexactly one of true witness oz, = 1] =7.—.(1 — -
T r

>1/2e

)r—l

e Since, we have a constant probability of success, running for O(log(n) iterations at 7’ such
that 7/ /2 < r <1/, suffices.

e Hence, an overall runtime of O(n“.log(n).log(n) is sufficient for find a witness.
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