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1 Overview

In the previous lecture, we discussed

1. The minimum sample size to estimate fraction p of an unknown set, conforming certain
property, within absolute relative error ε and at most δ failure probability.

2. How to find median of a list of elements with time complexity 3
2n+ o(n).

3. (Briefly) the streaming algorithm to find α-heavy hitters (HHα) after seeing v1, v2, . . . , vm
items, deterministically.

In this lecture, we revisit the count-min sketch problem, and analyze it in detail. First, we recall
the turnstile model, and introduce some notation that we will follow throughout the scribe.

2 Introduction

Streaming algorithms are (informally) defined as algorithms that work on (massive) streams of data
given only limited space and computational resources. The data stream model we will be interested
in is called turnstile model. In turnstile model, each update is of the form (vi, ti), where vi is a
data point/ item, and ti ∈ Z is a count. Throughout the scribe, we will denote by xu, the number
of times item u appeared in the stream. Concretely, after each update (vi, ti), xvi += ti. Also, we
define x = (xu1 , . . . , xun), n = ||x||0 and m = ||x||1, where ui’s are all distinct items.

In the standard turnstile model, xvi could be negative, however here we consider strict turnstile
model, where xvi is non-negative for all items vi at all time steps. We would like to find the set
of α-heavy hitters (HHα), where HHα := {u | xu ≥ αm}, where m,n are same as defined before.
Instead of solving perfectly, we solve an approximate version of the heavy hitters problem in the
strict turnstile model. The (ε, δ)−HHα is defined as finding a set S subject to the constraint that
S ⊇ HHα and ∀u ∈ S, xu ≥ (1 − ε)αm, with failure probability at most δ. We could even find a
set S such that ∀u ∈ S, xu ∈ [(1− ε)αm, (1 + ε)αm] using the same idea.

In the next section, we describe count-min sketch, and show how to use it to solve (ε, δ)−HHα.

3 Count-min sketch

Count-min sketch could be considered as a counting Bloom filter using pairwise independent hash

functions. In count-min sketch, we first make a sketch Y ∈ Zr×c, such that r = O

(
log

1

δ

)
,
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c = O

(
1

α

)
. For each row i, we use a different pairwise independent hash function hi : U → [c],

and each element in y satisfies:

yi,u =
∑

v|hi(v)=u

xv

Every update (v, t) modifies the sketch Y as follows (Figure 1)

∀i ∈ [r], yi,hi(v) += t.

Figure 1: Updating count-min sketch

Given the sketch Y , we define x̃v
(i) = yi,hi(v) as the estimate of xv from ith row. It is straightforward

to see that we always overestimate the value because xv ≥ 0 ∀v under the strict turnstile model.
Therefore, to get a better estimate for xv, we compute x̃v as

x̃v = min
i
x̃v

(i).

Claim 1. (Informal) Zi = x̃v
(i) − xv is small

(
≤ 2
||x||1
c

)
with probability ≥ 1

2
.

Proof. In order to prove the above claim, we show an upper bound on E[Z], and then apply markov’s
inequality.
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E[x̃v
(i) − xv] = E

∑
v′ 6=v

xv′ · Ihi(v′)=hi(v)

 (1)

=
∑
v′ 6=v

xv′ · E[Ihi(v′)=hi(v)] (2)

=
∑
v′ 6=v

xv′ ·
1

c
(3)

≤ ‖x‖1
c

(4)

Ihi(v′)=hi(v) denotes the indicator function which is 1 iff hi(v
′) and hi(v) collide. Equation (2) to

(3) follow from pairwise independence of hi.

Now we use markov’s inequality to obtain,

P
(
E[x̃v

(i) − xv] ≤
2‖x‖1
c

)
≤ 1

2

⇒ P
(
E[x̃v − xv] ≤

2‖x‖1
c

)
≤ 1− 1

2r
= 1− δ.

Let c =
2

εα
, we get

P
(
E[x̃v − xv] ≤

2‖x‖1
c

)
= P (E[x̃v − xv] ≤ εα‖x‖1)

= P(E[x̃v − xv] ≤ εαm)

≤ 1− δ

Now to find the (ε, δ)-heavy hitters (find S ⊇ HHα), we look at all v ∈ U , and take S := {v | x̃v ≥
αm}. First, observe that if xv ≥ αm, then x̃v ≥ xv ≥ αm, therefore v ∈ S. Second, if xv <
(1 − ε)αm, then v does not satisfy the criterion of belonging to (ε, δ)-HHα, and we know from
above inequalities that the probability x̃v ≥ (1− ε)αm given xv < (1− ε)αm is at most δ = 1/2r.
Therefore, the probability of any item being misclassified as ε−HHα is at most 1/2r, so using union
bound, we could write that

E[No. of incorrect classifications] ≤ |U | · δ

Therefore, if we replace r from log
1

δ
to log

|U |
δ

, we get δ′ = δ
|U | , and E[No. of incorrect classifications] ≤

|U |δ′ = δ. Therefore, using markov inequality

P(E[No. of incorrect classifications] ≥ 1) ≤ δ
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So now we get the set S as (ε, δ)−HHα heavy hitter approximation with probability 1− δ, and the

time complexity is O

(
1

εα
log
|U |
δ

)
.

3.1 Improvement of error bound

Previous analysis make no assumption on the data stream, however, we observe that many kinds of
real data has skewed distribution, such as power distribution, where the count of ith item xi = C ·i−s,
where C is a constant, and s > 1. When we estimate the count of the item, and when it collides
with the first k large items, our error estimation will be much better than previously described.

Claim 2. (Informal) We can achieve error approximately C
αs−1

s− 1
.

Let H ⊆ U denote the top c/4 items of x. Let x−k be the set of items except for the first k heavy
items. The collision probability is:

∀v ∈ U, P(hi(v) ∈ {hi(v′) | v′ ∈ H, v′ 6= v}) ≤ |H|
c

=
1

4
. (5)

Let error Z =
∑

v′ 6=v,hi(v′)=hi(v),v /∈H xv. We have

E[Z] =
1

c

∑
v′ 6=v,v /∈H

xv =
‖x− c

4
‖1

c

P

(
Z ≥ 4

‖x− c
4
‖1

c

)
≤ 1

4
(6)

Also note

‖x−k‖1 = C
∞∑
k+1

1

is
≤ C

∫ ∞
k

1

is
di = C

1

s− 1

1

ks−1
. (7)

So the probability neither (5) or (6) happen is≥ 1
2 , with errorO

(
C

c(s− 1)

(
4

c

)s−1)
, orO

(
C
αs−1

s− 1

)
because c = O

(
1

α

)
.

3.2 Improvement of time complexity

Now we have shown that with count-min sketch, we can compute ε heavy hitter S ⊇ {v | xv ≥

α‖x‖1}, |S| ≤
2

α
with O

(
1

α
log |U |

)
space. Next, we try to improve the time complexity.
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Observe that if v is heavy (xv ≥ α‖x‖1), for all S ⊇ {v}, we have
∑

v∈S xv ≥ α‖x‖1, or these sets
are heavy as well.

We solve the heavy hitter problem using a divide and conquer procedure, using log |U | sketches.
The first sketch will count the two subsets separated based on the difference of the first bit of each
item. The second sketch count subsets on the difference of the first two bits within the four subsets.
For sketch t, we have

yt,i,u =
∑
v:ht,i

(first t bits of v == u)

To get all the heavy hitters, we perform a binary search on these subsets from sketch 1 to log |U |,
as described before, at each level, if the subset S contains the heave hitter, the subset itself is
heavy. We trace the heavy subset to the last sketch and output all the heavy single items. The

time complexity in this case is O

(
1

α
log2 |U |

)
.
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