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1 Overview

In the last class, we defined the terms cut sparsifier and spectral sparsifier and introduced Roman
Vershynin (RV) Lemma which will help us analyse Laplacians of random graphs. In this lecture, we
show how to produce spectral sparsifiers with O(nlogn/e?) edges where n is the number of nodes
in the graph and ¢ is a measure of the quality of the sparsifier.

2 Background

Definition 1. For A and B symmetric matrices, A X B if Vx, xTAx < 2TBzx

Definition 2. Graph Laplacian
The Laplacian matriz of a weighted graph G = (V, E,w), where w, ) is the weight of edge (u,v)
is defined by

Le(u,v) = {‘“““’”) Juze
> Wiy fu=v

The Laplacian can be expressed in terms of differences of standard basis vectors.

Lg = Z we(eu - ev)(eu - ev)T

e=(u,v)

= E WelleU]

e=(u,v)
where e; is the standard basis vector such that (e;); = d;; and for edge e = (u,v), ue = €y, — €.

Definition 3. Spectral Sparsifier
A graph H = (V, E',w') is an e—spectral approzimation of a graph G = (V, E,w) if

(1 — E)LG <Ly = (1 + E)LG
where Lg, Ly are the Laplacians of graphs G, H respectively.
Note that TLgz = >, ) We(Tu — 7,)? is shift invariant. So in the analysis below, we restrict
ourselves to x such that 271 = 0.

Lemma 4. Roman Vershynin Lemma
Let {X;}", be i.i.d random vectors in R", such that each X; is uniformly bounded

1Xill2 <w, |EX;X])| <1 Vi€ [m]
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Last class, we proposed the following randomized algorithm for computing a spectral sparsifier.

Algorithm 1 Generates spectral sparsifier
Input: G = (V, E,w). Output: H = (V, E’,w'), a spectral sparsifier of G
1: for m times do
2: Choose each edge e € E with some probability p,
3: Add edge e to E’ with w'(e) = 2=

mpe

In expectation, the Laplacian of the graph H output by the above algorithm is equal to the Laplacian
of G. Let Y. = |, /%ue and let {Z;}/", be independent random variables where Z; = Y, with

probability p.. Note that Ly = = >, Z, Z].

E[Ly] =E
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In the next section we discuss how to choose p., a probability distribution over edges in G, that
gives us a good spectral sparsifier.

3 Spectral Sparsifiers

We start with the simple case of complete graphs, which have a spherical Laplacian, and move
to non-complete graphs in Section 3.2. To keep the analysis simple we only consider unweighted
graphs.

3.1 Complete Graphs

When G is a complete graph, the Laplacian L¢ is given by:
n—-1 -1 ... -1
-1 n—-1 --- -1
Lo = . . ) . =nl—117

-1 -1 - n-1



where 1 is a vector of all 1’s.

From Definition 3, for H to be a spectral sparsifier, we need that

(1-e)Lg <Ly < (1+¢)Lg

< (1—€)2TLgx <2"Lgx < (1+¢e)z"Lgx Vr st 21 =0

& |27 (Ly — Lg)z| < exTLgx Vst 271 =0

< ||Lg — Lgll2 < en
where the last step follows from the assumption that 1Tz = 0 and 2"Lgz = 27 (nl —11T)z =
nlz[[?.
We now show that when m > ("t’#)
e—spectral approximatior of G. We have:

pe:(é):@<7j2>

It is easy to see that the random variables {Z;}I" are uniformly bounded:

and p. is uniform over edges, Algorithm 2 outputs an

1 Zill2 = || Yell (for some edge e)

= %\/ Udue
DPe

_ ./t
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= 0O(n)

Also, from before we have that
1EZ:Z]]| = |ILcll = n

Applying RV Lemma on random variables X; = %, we get

1 nlogn
E<||LH—LG|) <y fmos
n m
Thus
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E(|Ln - Lell) < ny/ ==

€
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So for m > ("lsgg"), we get an e—approximate spectral sparsifier of G.

3.2 Non-complete Graphs

For non-complete graphs, there are two issues that we need to deal with.



1. The Laplacian of a non-complete graph need not be spherical. So in order to apply RV lemma,
rather than looking at random variables {Z;}7",, we look at transformed random variables
{AZ;}7, for some matrix A.

2. Need to find a better sampling distribution, p.. For example, in the case of a barbell graph,
we need to return the middle edge to get a good sparsifier.

Consider an unweighted graph G. Let U € RIFI*" be matrix representing |E| edges where

N 72
g | — ub
_ U\TE| .
Then the Laplacian for G can be represented as
Le=U"U

L¢ is symmetric since Lf, = Lg. Also we have that Vo, 2TLgz = 2TUTUz = |Uz| > 0 and thus
L is positive semi-definite. This implies that all eigenvalues of Lg are non-negative. Using the
eigenvalue decomposition of Lg, we can express Lg as

Lg = zn: Aibib]
=1

where {b;}!" ; are orthonormal eigenvectors and A\; > 0.

Positive powers of Lg can be calculated by
n
LE =" X!
i=1
The Moore-Penrose pseudo-inverse of Lg is given by
n
-1
LEL =" X\ 1hi]
i=1
;20

and thus .
t1 —1/2
(Le)? = Y A 20ib]
i=1
A0
Using these, we can express the projector onto the span of Lg as
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Note that HEGHLG =1,

For H to be a spectral sparsifier of G, we need that

2'Lgx = (1+e€)x2"Lgx, Yz
o 2TLyr=(1+eaTLgr, Vrst z71=0
< 2TLgx = (1 £ €)aTLgx, Vz € span(Lg)

where the last statement holds when G is a connected graph (because Lg has rank n — 1 for a
connected graph and Lg1 = 0). Thus for any = € span(Lg):

:c—HLGa:—(LT) LGx—(LT)%
1
where y = L x. Then the condition becomes:

xTLHx =(lxe)2"Lgz, Vz €span(Lg)

(1+e)

S yTLTjLHL =(1+e)y TngLng%Ty
— (kL Ly LA
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=(1+e)y

1+e)yry, Yy
Subtracting yTIlI7,y from both sides, we get

1 1T
T (LE LuLly —Tp,)yl < ey™L,y = eyTy

1 1T
& ||LE Lyl —Tp | <e
1
We now apply RV Lemma on random variables 4; = LJg Z;. Let k = max || A;|| and we have:

1 1T
IE[A:A])| = |ILE B(Z:Z]ILE ||
1 1T
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Applying RV Lemma we get:

logn
|5 AT - B ELAATI = 1L L Ll — gl < ny/ =

So if m > (k?logn/€?), we get a e—approximate sparsifier. Note that we haven’t yet defined the
probability distribution p.. « will depend on the choice of pe.

To pick a good probability distribution p. and to compute x, we appeal to physical intution.
Consider the graph to represent nodes on a circuit and let x € R™ denote the voltages on each



node. The current flow along edge e, denoted by I, from u to v is related to the voltage drop.
Thus I, = z, — z, = uex. The flow along all edges is given by I = Ux where I € RIE.

Given a battery on the circuit, with zs and x; fixed at some voltages, we can calculate the rest of
the internal voltages x, using Kirchoff’s Laws:

current into vertex — current out of vertex = external flow

We know that the external flow is: (A at s, —A at ¢,0 elsewhere )

For node v,

(Iea:t)v: Z Ie_ Z Ie

e=(u,v) e=(v,u)

- Z Ie(Ue)U

= (UTI)U
= (UUx),
= (Lgz)y

We know the external flow and want voltages so we compute z = LgIemt where LTG is the pseudoin-
verse.

If we set Iey to ue for some edge (u,v) to indicate that 1 unit of current is pushed from u to v,

then Lgue is a vector of all voltages in the circuit and thus ulLTGue is the voltage drop from u to
.

From Ohm’s Law, we know that V' = I R.s; where R.s; is the effective resistance. Since we have
1 unit of current, we conclude that R.;y = ungue.

We use this fact in our calculation of || 4;]|.
14il|* = AT A;

37 4%
=ZTLY L 7z,
= ZTLLZ,

1
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This suggests to set p. < R.rs and after normalizing

Do = Reyy(e)
© X Regyle)

Thus 1% = Y Repp(e) and we need m > ((3° Refr(e))logn/e?) to get a e—approximate sparsifier.
And finally to compute ) R.¢r(e), we use Foster’s Theorem.



Theorem 5. Foster’s Theorem
Let Rerf(e) denote the effective resistance along edge e on a connected graph of n nodes. Then

ZReff(e) =n-—1

ecE

Proof. Define P =U LLU T. Then

P2 =ULLLGLLUT = P

Thus P is a projection matrix, and all its eigenvalues A; € {0,1}. Since L has rank n — 1 and
P has the same rank as Lg, n — 1 eigenvalues of P are equal to 1 and the rest are 0. From the
definition of effective resistance we have:

Ress(e) = ungue =P,
=Y Reple) =tr(P)=) Ni=n—1
O

Finally, we conclude that we need m > (nlogn/e?) and complete the proof for non-complete graphs.
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