
CS 388R: Randomized Algorithms Fall 2015

Lecture 22 — 23 November 2015

Prof. Eric Price Scribe: Sid Kapur, Neil Vyas

1 Overview

In the last lecture we studied graph sparsifiers. In this lecture we will study Network Coding and
Edge Connectivity.

2 Edge Connectivity

Define the s-t edge-connectivity to be the number of disjoint paths from s to t. Note that this
is the same as the size of the s-t min-cut, which we will denote as Cs,t. Today, we will study s-t
edge-connectivity on DAGs, or Directed Acyclic Graphs.

Naively, we can use the Ford-Fulkerson algorithm, where we greedily choose paths at each step,
flipping those paths that we used to move from s to t. This achieves O(md) time, where m is the
number of edges, and d is the max flow from s to t.

Suppose we are interested in the following two variants of this problem: all-pairs and single-
source edge-connectivity. Then, using the algorithm described above, we can achieve O(mdn2)
and O(mdn) time, respectively, where n is the number of vertices and m and d are as above. (Note:
we can replace d by any quantity that upper bounds the max flow, for example, the maximum
vertex degree.)

Can we improve? We claim that we can achieve single-source edge-connectivity in O(md2). (Due
to Cheung, Lau, and Leung, 2011). In fact, we can achieve acyclic, single-source edge-connectivity
in O(mdω−1) and all-pairs (not necessarily acyclic) in O(mω), where ω is the time complexity of
matrix multiplication; we upper bound this by 3 to make the first claim.

The idea behind this analysis is to relate the edge-connectivity problem to network coding.

3 Network Coding

3.1 Introduction

In each time step, each node can send one “packet” of information, and each edge is capable of
transmitting one “packet.” Say that we have the following graph, and s1, s2 have messages A,B
respectively, which they want to send to t1 and t2. Our objective will be to saturate the edges
of the min-cut, since those are our “bottlenecks.” We can be clever by sending A along the top
path, B along the bottom path, and A ⊕ B along the middle path, and decoding B,A at t1, t2,
respectively, using A⊕B.

1

s1

1

3

2

t1

s2

5 6

t2

4

Suppose that we now want to send a message from s1 to t1, and another from s2 to t2. Then we can
send 2

3 of each source’s message to the non-shared branch and 1
3 to the shared branch, achieving

1
2` bits communicated per round.

In fact, we can send ≥ `Cs,t(T − n) bits in T rounds, where ` is the number of bits each node can
communicate (size of the message, in our case), and n is the length of the path the messages travel.

3.2 Unknown / Changing network structure

The earlier methods relied on our knowledge of the network’s structure to achieve more efficient
communication. However, we might not know the structure of the network, or it might be changing
in time. Thus, we would like a method that is oblivious to the overall network structure. We will
employ the idea of sending components of the messages obliviously and then reconstructing the full
message at the destination. Suppose we have many source nodes, with distinct messages, trying to
communicate with one destination t.

Suppose that our input is of the form

m1, . . . ,mk ∈ Fr
q;

note that this input is kr log q bits in size.

For i = 1, . . . , k, let m̂i = (ei,mi) ∈ Fr+k
q , where ei is the unit vector in Fk

q . Note that m̂1, . . . , m̂k

are linearly independent because of the eis. This guarantees that we can recover the original vectors
exactly through Gram-Schmidt. Now, let Xs = span {m̂1, . . . , m̂k} ⊆ Fr+k

q .

Our goal is now to transmit Xs efficiently to t. This is a simpler problem because, in order to
transmit the original messages, we only need to transmit k linearly independent vectors in Xs.
This is sufficient to recover the basis m̂1, . . . , m̂k, and from there our original messages.

Suppose that the capacity of each edge is (k + r) log q bits, i.e. we can transmit one vector in the
subspace per edge per time step.

2

function SubspaceCommunication
Set Xs as described above
Xv := {0} ∀v 6= s
for all (v, v′) ∈ DAG-ordered edges do

v samples m ∈ Xv

v sends m to v′

v′ “adds” m to Xv′

end for
return Xt

end function

Claim 1. There is a 1− m
q chance that v′ “learns” something from v in this procedure, given that

Xv′ 6= Xv.

Proof. This is because there exists a u such that u ∈ Xv, u /∈ Xv′ , and in order for v′ to “not learn”
anything from v, the coefficient of u in m, the message that v sends to v′, must be 0. Since we are
in the field Fq, this happens with probability 1

q .

Note that the communication cost is kr log q (which grows slowly with q), so we can set q to be a
very large prime without a great penalty.

Claim 2. Let C be the number of disjoint paths from s to t (by our notation above, there are Cs,t

such paths). Then for all vertices v1, . . . , vC , where vi is in the ith of the C disjoint paths, there
exist vectors u1, . . . , uC , where uj ∈ Xvj , and Xvj is the subspace “by the time” vj is reached, such
that the ui are linearly independent with probability 1− m

q .

Proof. The proof follows by induction on time.

Suppose there exist u1, . . . , uC with uj ∈ Xvj , and the ui are linearly independent. Send u from vi
to v′i. Then we want to show that there exist u1 ∈ Xv1 , . . . , uC ∈ XvC such that these ui are linear
independent.

This is true if u ⊥ {u1, . . . , ui−1, ui+1, . . . , uC}, else this is true if 〈u, ui〉 6= 0. Note that this second
condition occurs with probability 1− 1

q . Since we make at most m moves total, we have that “they
all work,” i.e. the vectors are linearly independent in each step, with probability 1− m

q . Note that
m here is the length of the path from s to t, not the vectors of the input.

Thus, we need to make m steps, and in each step we perform d2 log q work, since it takes log q time
to operate on vectors in Fq. So our time complexity for bit operations is O(md2 log q) with success
probability 1− 1

mc , and thus our time complexity for word operations is O(md2), as desired.

Now we address the method of sampling u from Xv. Set Xv = UT
v Y , where Y ∼ F|Xv |

q are i.i.d.
uniform, and Uv are the vectors received by v up to this time, appropriately orthogonalized. Then
let u′ = u− UvUv′u. Note that the term being subtracted should remind you of projection. Then
u′ = 0 ⇐⇒ u ∈ Xv′ , so if u′ = 0, set Uv′ =

[
Uv
u

]
.

Note that we have, throughout, relied on some ordering of the vertices. This ordering is DAG
ordering, in which we only transmit from a node if it has received all (possible) incoming messages.

3

For example, in the following graph, if we don’t employ DAG ordering, it’s possible that we reach
the destination “too soon,” and the subspace we’ve transmitted isn’t of high enough dimension;
suppose we take path (i), for example.

s

1

4

2 3

(i)

5

t

6

3.3 Continuous Transmission

This algorithm involves every vertex communicating at most once, so what about continuous trans-
mission? We’ll give a cursory look at the gossip algorithm.

After T rounds, t receives X with dimension ≥ C(T − n) w.p. 1 − (T−n)m
q , where k = C(T − n).

This implies that we’ve sent (r log q)C(T − n) bits.

Claim 3. r log(q)CT is optimal for any protocol.

4

