CS 388R: Randomized Algorithms

Fall 2015

Lecture 4 — Sep 9, 2015

Prof. Eric Price

Scribe: Xiangru Huang & Chad Voegele

1 Overview

In previous lectures, we introduced some basic probability, the Chernoff bound, the coupon collector problem, and game tree evaluation.

In this lecture, we will introduce concentration inequalities.

2 Coupon Collector Problem

Draw numbers (coupons) independently from $[n] = \{1, 2, ..., n\}$. How long does it take to see all of the numbers?

Suppose T_i is the number of draws to get the *i*-th new number. Let $T = \sum_i T_i$.

Fact 1. The T_i 's are independent of each other.

Fact 2. T_i follows geometric distribution with success probability, $p = \frac{n+1-i}{n}$.

Fact 3. If $X \sim Geometric(p)$,

$$\begin{split} E[X] &= p \cdot 1 + (1-p) \cdot (E[X|X \ge 2]) \\ &= p + (1-p)(1+E[X]) \\ \Rightarrow E[X] &= \frac{1}{p} \end{split}$$

$$\begin{split} E[X^2] &= p \cdot 1^2 + (1-p) \cdot E[X^2 | X \ge 2] \\ &= p + (1-p) E[(X+1)^2] \\ &= p + (1-p) (E[X^2] + 2E[X] + 1) \\ &= p + (1-p) E[X^2] + 2(1-p)/p + (1-p) \\ \Rightarrow E[X^2] &= \frac{2-p}{p^2} \end{split}$$

$$Var(X) = E[(X - E(X))^{2}] = E[X^{2}] - (E[X])^{2}$$

 $\Rightarrow Var(X) = \frac{1 - p}{p^{2}} \le \frac{1}{p^{2}}$

Therefore in the Coupon Collector Problem,

$$E[T] = \sum_{i=1}^{n} E[T_i] = \sum_{i=1}^{n} \frac{n}{n+1-i} = nH_n \approx n \log n$$

$$Var[T_i] \le \frac{1}{p_i^2} = \left(\frac{n}{n+1-i}\right)^2$$

 $\Rightarrow Var[T] = \sum_{i=1}^n Var[T_i] \le n^2 \left(\sum_{i=1}^n \frac{1}{i^2}\right) \le n^2 \cdot \frac{\pi^2}{6} = O(n^2)$

3 Concentration Inequalities

$$\forall i, \ Pr[T_i \ge 1 + \alpha] \le \left(1 - \frac{n+1-i}{n}\right)^{\alpha}$$

Assume δ is some failure probability. Setting $\alpha_i = \left(\frac{n}{n+1-i}\right)\log\frac{n}{\delta}$ and because $(1-\frac{1}{x})^x < \frac{1}{e}$, we have

$$\forall i, \ Pr[T_i \geq 1 + \alpha_i] \leq \frac{\delta}{n}$$

Definition 4. Union Bound

$$Pr[X_1 \cup X_2 \cup \ldots \cup X_n] \le \sum_i Pr[X_i]$$

Using a union bound, we have

$$Pr\left[T \ge n + n \log n \log \frac{n}{\delta}\right]$$

$$= Pr\left[\sum_{i} T_{i} \ge n + \sum_{i} \alpha_{i}\right]$$

$$= Pr[T_{1} \ge 1 + \alpha_{1} \cup \ldots \cup T_{n} \ge 1 + \alpha_{n}]$$

$$\le \sum_{i} Pr[T_{i} \ge 1 + \alpha_{i}]$$

$$< \delta$$

Definition 5. With High Probability (w.h.p.)

$$X \le O(y)$$
 w.h.p. $\Leftrightarrow \forall c_2, \exists c_1, s.t. Pr[X \le c_1 y] \le n^{-c_2}$

 $T = O(n \log^2 n)$ with high probability.

3.1 Markov's Inequality

For a non-negative random variable T and any non-negative α ,

$$E[T] \ge Pr[T \ge \alpha] \cdot \alpha$$
$$\Rightarrow Pr[T \ge \alpha] \le \frac{E[T]}{\alpha}$$

In the Coupon Collector Problem,

$$\alpha = \frac{E[T]}{\delta} = \frac{nH_n}{\delta}$$
$$\Rightarrow Pr\left[T \ge \frac{nH_n}{\delta}\right] \le \delta$$

3.2 Chebyshev's Inequality

For a random variable, X, let $\mu = E[X]$ denote the expectation and $\sigma^2 = Var[X]$ denote the variance. Starting from Markov's Inequality, we find

$$Pr[(X - \mu)^2 \ge \alpha^2] \le \frac{E[(X - \mu)]^2}{\alpha^2} = \frac{\sigma^2}{\alpha^2}$$

Setting $\alpha \to \alpha \sigma$

$$Pr[(X - \mu)^2 \ge \alpha^2 \sigma^2] \le \frac{1}{\alpha^2}$$

Taking the square root, we find

$$Pr[X \ge \mu + \alpha \sigma] \le \frac{1}{\alpha^2}$$

$$Pr[X \le \mu - \alpha\sigma] \le \frac{1}{\alpha^2}$$

Using this result in the Coupon Collector Problem, gives us

$$Pr[T \ge nH_n + \frac{1}{\sqrt{\delta}}O(n)] \le \delta$$

Setting $\delta = \frac{1}{\log^2 n}$

$$Pr[T \ge nH_n + O(n\log n)] \le O\left(\frac{1}{\log^2 n}\right)$$

Most of the time, the typical deviation is $O(\sigma)$.

$$Pr[|x - \mu| < O(\sigma)] \approx 1 - \delta$$

3.3 Moment Method

If f is non-negative, by Markov's inequality,

$$Pr[f(X - \mu) \ge f(\alpha)] \le \frac{E[f(X - \mu)]}{f(\alpha)}$$

For f increasing,

$$Pr[X - \mu \ge \alpha] \le \frac{E[f(X - \mu)]}{f(\alpha)}$$

Set $f = |t|^k$,

$$Pr[|X - \mu|^k \ge |\alpha|^k] \le \frac{E[|x - \mu|^k]}{|\alpha|^k}$$

For one side,

$$Pr[X \ge \mu + \alpha] \le \frac{E[|x - \mu|^k]}{|\alpha|^k}$$

Setting $\delta = \frac{E[|x-\mu|^k]}{|\alpha|^k}$, we have

$$Pr\left[X \le \mu + E[|x - \mu|^k]^{1/k} \cdot \left(\frac{1}{\delta}\right)^{1/k}\right] \ge 1 - \delta$$

If we consider $X \sim N(0, \sigma^2)$, we know

$$E[|x|^k] \approx (k\sigma^2)^{k/2} \ \forall k > 0$$

which means

$$Pr\left[X \ge \mu + O\left(\sqrt{k} \cdot \sigma \cdot \left(\frac{1}{\delta}\right)^{1/k}\right)\right] \le \delta$$

Setting $k = \log \frac{1}{\delta}$, we get

$$Pr\left[X \ge \mu + O\left(\sqrt{\log \frac{1}{\delta}}\right)\right] \le \delta$$

3.4 Moment Generating Function

Definition 6. The moment generating function, parameterized by λ , is defined as

$$MGF_X(\lambda) = E[e^{\lambda(X-\mu)}]$$

Assume X is centered (E[X] = 0).

$$e^{\lambda x} = 1 + \lambda x + \frac{(\lambda x)^2}{2} + \frac{(\lambda x)^3}{3!} + \dots + \frac{(\lambda x)^k}{k!}$$

We can use parameter λ to adjust the weights on each term. When λ is larger, more weight is on higher order terms.

From the derivation of the Moment Method, setting $f(x) = e^{\lambda x}$,

$$Pr[X \ge \mu + \alpha] \le \frac{MGF_X(\lambda)}{e^{\lambda \alpha}}$$

Fact 7. If $X \sim N(0, \sigma^2)$, $MGF_X(\lambda) = E[e^{\lambda x}] \le e^{\lambda^2 \sigma^2} \ \forall \ \lambda \in \mathbb{R}$

Using this,

$$Pr[X \ge \mu + \alpha] \le \frac{MGF_x(\lambda)}{e^{\lambda \alpha}}$$

$$= e^{\frac{\lambda^2 \sigma^2}{2} - \lambda \alpha}$$

$$= e^{\frac{1}{2} (\lambda \sigma - \frac{\alpha}{\sigma})^2 - \frac{\alpha^2}{2\sigma^2}}$$

Set $\lambda = \frac{\alpha}{\sigma^2}$, we get

$$Pr[X \ge \mu + \alpha] \le e^{-\frac{\alpha^2}{2\sigma^2}}$$

If $\delta = e^{-\frac{\alpha^2}{2\sigma^2}}$, we have

$$\alpha = \sigma \sqrt{2log\frac{1}{\delta}}$$

Note that this is the same $O\left(\sqrt{\log \frac{1}{\delta}}\right)$ bound as we found in the method of moments, except that now we know the constant.

3.5 Subgaussian Variables

Claim 8. The following three statements are equivalent if we only care up to a constant for σ (i.e. $\forall i, j \in \{1, 2, 3\}, \ \sigma_i = \theta(\sigma_i)$)

X is subgaussian with parameter
$$\sigma$$
, i.e. $\forall \lambda \in \mathbb{R}, MGF_X(\lambda) \leq e^{\frac{\lambda^2 \sigma_1^2}{2}}$ (1)

$$Pr[X \ge \mu + t] \le e^{-\frac{t^2}{2\sigma_2^2}}$$
 (2)

$$E[|x|^k]^{1/k} \le O\left(\sigma_3\sqrt{k}\right) \tag{3}$$

Fact 9. The sum of subgaussian variables are subgaussian.

$$X = X_1 + \dots + X_n$$

$$MGF_X(\lambda) = E\left[e^{\lambda X}\right] = E\left[e^{\lambda(\sum_i x_i)}\right] = E\left[\prod_i e^{\lambda x_i}\right]$$

$$= \prod_i E\left[e^{\lambda x_i}\right] \text{ (by independence)}$$

$$= \prod_i MGF_{X_i}(\lambda)$$

$$\leq \prod_i e^{\lambda^2 \sigma_i^2/2} \text{ (by subgaussian)}$$

$$= e^{\frac{\lambda^2}{2}(\sum_i \sigma_i^2)}$$

This implies X is subgaussian with parameter $\sqrt{\sum_i \sigma_i^2}$.

Fact 10. If $X \in [0,1]$, then X is subgaussian with $\sigma = 1/2$ by Hoeffding's Lemma.¹

Let $X = \sum_i X_i$ where $X_i \in [0,1]$. X is subgaussian with $\sigma = \sqrt{n}/2$. Plug this into (2), we have

$$Pr[x \ge \mu + \alpha] \le e^{-\frac{2\alpha^2}{n}}$$

which is exactly the Chernoff bound.

4 Next Class

In the Coupon Collector Problem, we had

$$Pr[T_n \ge \alpha] \le \left(1 - \frac{1}{n}\right)^{\alpha} \approx e^{-\alpha}$$

This is not of the form $e^{-\alpha^2}$ so we cannot use the subgaussian results. We will relax the subgaussian requirement to subexponential and subgamma. This will lead to Bernstein's inequality.

$$MGF_X(\lambda) = E[e^{\lambda X}] \le e^{\frac{\lambda^2 \sigma^2}{2}} \ \forall \ |\lambda| \le B$$

References

- [MR] Rajeev Motwani, Prabhakar Raghavan Randomized Algorithms. Cambridge University Press, 0-521-47465-5, 1995.
- [RV] Roman Vershynin Introduction to the non-asymptotic analysis of random matrices. *CoRR*, abs-1011-3027, 2010.

¹https://en.wikipedia.org/wiki/Hoeffding%27s_inequality