
Problem Set 3

Randomized Algorithms

Due Wednesday, October 14

1. For a hash family H from [U] to [n], at a set of items S ⊂ [U], let
X(H, S) be the random variable denoting the load in the first bin:

X := |{i ∈ S | h(i) = 1}|

as a distribution over h ∈ H. Further, let f(H, S) denote the expected
max load in any bin:

f(H, S) := E
h∈H

max
j∈[n]
|{i ∈ S | h(i) = j}|.

(a) For any t ≥ 1, and for any k-wise independent hash family H with
k = O(1), and any set S with |S| = n, show that

Pr[X ≥ t] . 1/tk.

Hint: bound E[Xk].

(b) Show that for a k-wise independent family H, k = O(1), that

f(H, S) . n1/k

for any S with |S| = n.

(c) Show that there exists a pairwise independent hash family H and
set S with |S| = n such that

f(H, S) &
√
n.

2. [Karger.] In class, we showed that cuckoo hashing achieves worst case
constant time lookups and expected constant time insertion/deletion,
with O(n) space to store n items. Show how to get the same guar-
antees, but using only (1 + ε)n space for a small constant ε. For this
problem, assume that you have access to a perfectly random hash func-
tion. Hint: Use the following ideas:

1

• Probing more than twice in a table increases the chances of finding
an empty cell.

• If after some probes you fail to find an empty cell, move the failed
item into an “overflow” table that uses cuckoo hashing.

3. A minimal perfect hash function for a set S of size n is one that maps
S to [n] with no collisions. In class, we showed how to take S and
construct a minimal perfect hash function for S that can be evaluated
in constant time. The construction took expected O(n) time and the
resulting function took O(n) words to store.

Show that this last condition cannot be significantly improved upon.
In particular, show that any procedure for storing a minimal perfect
hash function requires at least Ω(n) bits for some S of size n. Assume
the universe size U is polynomial in n. Hint: show that any particular
function h is perfect for at most a 1/2Ω(n) fraction of the possible sets
S.

4. [Karger.] Bloom filters can be used to estimate the difference between
two sets. Suppose that you have sets X and Y , each with m elements,
and with r elements in common. Create an n-bit Bloom filter for each,
using the same k hash functions. Determine the expected number of
bits where the two Bloom filters differ, as a function of m, n, k, and r.
Explain how this could be used as a technique for estimating r.

2

