Problem Set 6

Randomized Algorithms

Due Wednesday, November 18

- 1. In class we presented an efficient randomized algorithm for bipartite matching on *d*-regular graphs.
 - (a) What goes wrong if the graph is not *d*-regular?
 - (b) Additionally, we showed that the algorithm achieves $O(n \log n)$ time in expectation. Show an algorithm that achieves $O(n \log n)$ time with high probability. **Hint:** it may help to recall how we showed that the coupon collector takes $O(n \log n)$ samples with high probability.
- 2. Consider the example given in class for how online bipartite matching using random edges achieves a competitive ratio of R = 1/2: each arriving vertex x_i has an edge to y_i as well as all of $y_{n/2}, \ldots, y_n$. Show that the algorithm that the algorithm given in class, which randomly ranks the right vertices y_i , has $R \leq 3/4$ on this example.
- 3. Suppose you can sample elements x_1, \ldots, x_m from a mean zero subgaussian variable X, and would like to compute its *kurtosis*

$$\kappa = \frac{\mathbb{E}[X^4]}{\mathbb{E}[X^2]^2}.$$

- (a) Consider the algorithm that computes the empirical fourth and second moments $\frac{\sum x_i^4}{m}$ and $\frac{\sum x_i^2}{m}$, and outputs the former divided by the latter squared. How large must m be for this to be an (ϵ, δ) approximation to κ ?
- (b) Construct a different algorithm that achieves an (ϵ, δ) approximation to κ with fewer measurements.

4. For a vector $x \in \mathbb{R}^n$, let $H_{k,p}$ denote the ℓ_p heavy hitters:

$$H_{k,p} := \{ i \in [n] \mid x_i^p \ge \|x\|_p^p / k \}$$

We say that an algorithm solves the ℓ_p heavy hitters problem if it returns a set \widetilde{H} for which

$$H_{k,p} \supseteq \widetilde{H} \supseteq H_{2k,p}.$$

with probability $1 - \delta$. In class, we discussed the following algorithms:

- The Count-Min Sketch, which solves ℓ_1 heavy hitters in $O(k \log(n/\delta))$ space and $O(n \log(n/\delta))$ time.
- The Count-Min Sketch Tree, which solves ℓ_1 heavy hitters in $O(k \log^2(n/\delta))$ space and $O(k \log^2(n/\delta))$ recovery time.
- The Count-Sketch, which solves ℓ_2 heavy hitters in $O(k \log(n/\delta))$ space and $O(n \log(n/\delta))$ recovery time.

In this problem we will construct a sublinear time algorithm for ℓ_2 heavy hitters.

(a) Consider a partition S_1, \ldots, S_m of [n], and suppose that $u \in S_i$ is an ℓ_2 heavy hitter, i.e. $x_u^2 \gtrsim ||x||_2^2/k$. In contrast to the ℓ_1 case, show that *i* is not necessarily an ℓ_2 heavy hitter for the vector $y \in \mathbb{R}^m$ given by

$$y_j := \sum_{v \in S_j} x_v.$$

(b) Show that *i* has a constant chance of being an ℓ_2 heavy hitter for the vector $y \in \mathbb{R}^m$ given by

$$y_j := \sum_{v \in S_j} \sigma(v) x_v.$$

where $\sigma : [n] \to \{\pm 1\}$ is a fully independent hash function. (If you would like, also prove this when σ is O(1)-wise independent.)

(c) Adapt the count-min sketch tree construction into a sublinear time algorithm for ℓ_2 heavy hitters, i.e. one that runs in $O(k \log^c(n/\delta))$ time and space for some constant c.