CS 388R: Randomized Algorithms Fall 2017

Lecture 16 — October 31, 2017
Prof. Eric Price Scribes: Andrew Russell, Aditya Gupta

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

n Coin Flips

Question: We have n coins, the probability of heads on each coin is p(< 1). Find Pr(#heads >

2)

Approach 1) We begin by finding lower and upper bounds.
For lower bound, when all tosses are heads,

Pr(#heads > g) > p"

For upper bound, using union bound,

Pr(#heads > g) < <n p%

Approach 2) Let X; € [0,1], Var(X;) =p(1 —p),

X; € subgamma(2/p,2)

ZXi € subgamma(2/np,2)

=1

n ‘ 9
Pr(> X = np+] < ¢ mEwi)
i=1

Set t = (3 —p)n

v
ENES

;. n
e—mzn{ 712%;) ’E}
n

e 16

IN A

Thus, using the first approach gives us a tighter bound.

1 Overview

In this lecture we discuss streaming algorithms. Our primary motivation here is to be able
to compute interesting functions on a stream wvi,vs,...,v, of data and corresponding counts
x = (z1,22,...,2,) where x; = (#j € [m] | v;) where n and m are much larger than our ca-
pacity to store.

There are two models of streams that we will consider.

e Insertion-only: items are only added to the stream.

e “Turnstile”: items can be inserted and deleted from the stream.

In this lecture, we will primarily focus on the insertion only model.

2 Streaming
Suppose we want to answer the following questions about the stream’s count vector.

1. We wish to estimate the zero norm ||z||p := (# nonzero x;) within a multiplicative factor of
(1 + ¢€) with probability (1 —).
2. Sample a random i € Supp(z) where Supp(x) is the nonzero coordinates of z.

3. Estimate ||x|;.

4. Estimate ||z||2.

We will make frequent use of hash functions to conserve space.

2.1 Estimating the 2-norm

We start with estimating the 2-norm. First we note that if we pick an m x n matrix A with entries
a;j € {—1,1} then if m = O(ei2 log 3 we will have L||Az||3 = (1 +€)||z|]3. So if we can compute
Az progressively, we can estimate ||x||2. We can do this by applying A progressively to the stream
values. If e; is the ith standard basis vector for R™, then we have:

Ax=A <ﬁ evj> = ﬁAevj
=1

=1

We now have one last thing to consider, which is the storage of matrix A. We can generate A
progressively by using 4-wise independent hash functions h; for each row i of A. Specifically,

A;j = hi(j). This is known as the “AMS Sketch.” Note that this gives us a result with constant
probability: for m = O(ei2 rows, we get an estimation (1 = €)||z||3 with % probability. To get a

higher probability 1 — §, we can use the median of matrices Ay, Aa, ..., Ajpgs.

2.2 Sampling from the support

First, consider a random hash function & : [n] — [0,1]. As we receive stream data v;, keep track
of the v; that has minimum h(v;). Since h is a random function, this minimum value will be
random also, and independent of the order of the stream data. This approach is known as the
“min-hash.” However, this is problematic for our space-constrained setting, since storing a truly
random function is O(n). So instead we will use a O(log(2)-wise independent hash function, which

gives us
1+
Plminses(h(z)) = h(Z)] = W VS C[n), 7€ S
2.3 Estimating the zero norm
We will use the min-hash technique for this problem as well. Let k = ||z||o be the number of

nonzero entries of z. Intuitively, if we use a random hash function, its minimum value across
nonzero values of x will get smaller as the number of nonzero values of x increases. More precisely,

we have E[min(h(x))] = k%rl since the range of the hash function is the unit interval. Thus,
k ~ m — 1 and so we want to estimate E[min(h(x))], which we can do more precisely

with multiple hash functions: %Zﬁ'l minges(hi(z)). This requires e% words (O(El2 logn) bits).
Alternatively, we can store the log of the minimum (i.e., the number of leading zeros), which would
give us a loglogn factor rather than logn.

