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1 Overview

In this lecture we will do the non-commutative Bernstein Inequality and Graph Sparsification
problem.

2 Bernstein Inequality

Let X1, Xo,..., X, bet n independent, not necessarily identically distributed random variables.
Further,
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We wish to find the tail bounds for | >"" | X;], i.e., P[| Y1 X;| > t] <?

Note that X;s are sub-gaussian(K). This in turn implies that ), X; is sub-gaussian(K+/n).

Thus,
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This in turn implies |y ;" | X;| ~ K+/n. However, note that the bound is weak when o < K/n.
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Note that X;s are also sub-gamma random variables. E[X?] < 0?K?, |X;| < K implies that
X; is sub-gamma(2v/20;K,4K). Let us assume o; is such that it subsumes K in the argument.
Thus, X; € sub-gamma(2v/20;,4K), and >, X; € sub-gamma(2v/20,4K). Using bounds for
sub-gamma random variables, we can now write
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But the mean may not be 0. We use E[>_" | X;] <E[> ", X?]% = o to write
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where C' > 0 is some constant. Also, note that (a) is meaningful only if (¢ — o) > 40+/In(2).
Notation: [|Al| = sup,<i [|Az|l2.

Theorem 1 (Non-commutative Bernstein inequality). Eztension of Bernstein-type inequalities to
matrices.

Let X1,..., X, be independent symmetric matrices with zero mean, i.e., E[X;] = 0 Vi € [m)].

Also, || X;|| < KVi € [m], and ||Y E[X?]|| < 0. Then, 3 C <0, such that
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We omit the proof of this theorem.

Theorem 2 (R-V theorem). Let X1, ..., Xy, be independent, and identically distributed vectors in
R™ such that || Xi|l2 < K ( K > 1), and |E[X;X,']|| <1 Vi€ [m]. Then,
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Proof. Let V; = X; X, — E[X;X,"]. We want to apply the non-commutative Bernstein theorem to
2t Vi

Upper bound for Y:
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We can now apply the non-commutative Bernstein inequality.
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Hence, when t > %2 log (%)7 and t > K log ()
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More on the subject can be found here [2].

3 Graph Sparsifier

Graph Sparsification problem is the following: Given a dense graph G = (V, Eg, W), find a sparse
graph H = (V, Eg, Wy), which approzimately preserves some properties of G. The vertex set will
remain the same, but the edge set and their weights can be different. We will henceforth denote
[V by n.

3.1 Cut-Sparsifier

In the first lecture we studied a randomized algorithm to compute the min-cut in a graph. Here we
study a related problem of finding a cut-sparsifier, namely, a sparse graph H, that approximately
preserves all the cuts in G.

For a given graph G = (V, E,W), a cut S C V has size:

CG(S) = Z W(“?”) : H{ueS’,vQ_ﬁS}
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Definition 3 (Cut-sparsifier). H is a cut-sparsifier for G if:

VS C V,Cn(S) = (1 £ €)Cq(S)

3.2 Spectral Sparsifier

The Spectral Sparsifier is a generalized form of cut-sparsification [1]. Let us define
Lo= Y Aup
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so that,
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L is called the Laplacian Matrix of the graph. Let Pg(z) = 2" Lgx

Definition 4 (Spectral Sparsifier). A spectral sparsifier is a graph that spectrally approzimates the
graph Laplacian. i.e. for all vectors x, we should have

Pp(z) = (14 €)Pa(x)
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Notation: < is the generalized matrix inequality on symmetric matrices: two symmetric matrices
A and B satisfy A < B iff (B — A) is positive semidefinite.

Theorem 5. Spectral Sparsifier = Cut-sparsifier

Proof. Will be done in next class. O
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