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1 Overview

We learned from last lecture that if you put n balls in n bins i.i.d uniformly at random, then
the maximum number of balls in any bin (the max load) is Θ( logn

log logn), with good concentration.
Suppose we want to improve this, so for each ball, we choose two bins at random (we will assume
without replacement), and place the ball in the bin with the lighter load. As we will see, this will
perform much better: O(log log n) with good concentration.

2 Intuition

Consider the number of bins that have at least k balls: call this random variable Vk. Then an
immediate bound is that Vi ≤ n

i , because we only have n balls to distribute. This bound is terrible,
especially as i increases, but we can use the i = 4 case as a base case.

So how many bins can we have with at least 5 balls? Intuitively, we know that a particular ball
needs to pick two bins that both have at least four balls for that ball to be placed in the fifth

position or higher. So we would expect that V5 = n
(
V4
n

)2 ≤ 1
42
n.

More generally, the trend we expect is that Vi ≤ βin, where

β4 =
1

4
βi = β2i−1

The max load is the largest nonzero Vi, so we want to find the βi that puts us below 1
n . Notice

that the βi follow a doubly exponential relation:

log log
1

β4
= 1

log log
1

βi
= 1 + log log

1

βi−1

=⇒ log log
1

βi
= i− 3

So the βi we want occurs when i ≤ log log n+ 3 = O(log log n), as expected.
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3 Claim & Proof

We need to formalize our intuition above, so let us introduce finer variables. Let Vi(t) = # of bins
at height at least i after t balls have been inserted.

Proposition 1. With high probability (that is, with probability 1 − O
(

1
nc

)
, where c can be made

arbitrarily large), we can bound Vi(t) as follows:

Vi(t) ≤ βin ∀t, ∀i ≥ 4

β4 =
1

4
βi = 2β2i−1

Even though we have added a factor of two to our βi, using the same argument as described in the
intuition, this bound allows us to make our desired statement.

Corollary 2. With high probability, no bin has more than O(log log n) balls.

Now, let us prove the proposition.

Proof. We will prove by induction. For the base case i = 4, we know that the statement is always
true, and so is true w.h.p.

Now, consider a general i.

The structure of the proof is that we will use the bound on Vi to bound Vi+1 by cleverly choosing
variables with which we can use the Chernoff bound, and then pulling back the bound on the new
variables to the bound on the desired variables. This will not work for large enough i, but in these
cases, bad events are so rare that a more simple bound can complete the proof.

We want to put Vi+1(t) in terms of Vi(t), and to do so, it will be helpful to consider the placement
of each ball in turn.

Let ht be the height of the tth ball inserted. Then we can say that

P[ht ≥ i+ 1 | state at t− 1] ≥
(
Vi(t− 1)

n

)2

since we need to randomly choose two of the Vi(t− 1) bins with at least i balls in it to have a ball
placed at height i+ 1.

We want to consider the above probability only in the case that Vi(t−1) obeys the desired inequality,
since otherwise we cannot induct. So let Yt be the indicator function, where it is 1 when ht ≥ i+ 1
and Vi(t− 1) ≤ βin. Then

E[Yt] = P[Yt = 1] ≤ P[ht ≥ i+ 1 | Vi(t− 1) ≤ βin] ≤
(
βin

n

)2

= β2i

And so E[
∑
Yt] ≤ nβ2i . We would like to perform Chernoff to get a high probability bound on

∑
Yt,

since this gets us closer to our desired quantity. However, we have two issues. First, our Yis are
not independent from each other, which is a condition for the Chernoff bound we are familiar with.
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Second, directly applying the Chernoff bound will not give us a bound, since we want something
in terms of β2i ≥ µ.

The first problem is actually not important; we have that the bound holds even if we specify the
state for time t − 1, and so this does not matter. The second problem can be resolved simply
through the following line of reasoning, using the multiplicative version of the Chernoff bound:

∀B ≥ µ,P[
∑
t

Yt ≥ 2B] ≤ P[
∑
t

Yt ≥ (1 +B/µ)µ] ≤ e−
(Bµ)2

2+Bµ = e
− B

2µ+B
B ≤ e−

B
3

And so

P[
∑

Yt ≥ βi+1n] = P[
∑

Yt ≥ 2β2i n] ≤ e−
βi+1n

6

This can be made below any polynomial we desire by choosing an appropriate bound for βi+1. For
example, to make the above below 1

n10 , we would need βi+1 ≥ 60 log n/n. (Note that in two places
we can choose our constant, here and at the end of the proof. Since the proof is split into two cases,
we should choose both our constants to be a desired c.)

We are getting closer to our desired value, but we are dealing with number of balls instead of
number of bins, and we still have the conditions on other random variables. Let Qi be the event
that Vi(t) ≤ βin for all t. We want to bound P[any Qi] ≤

∑
P[Qi].

If Qi occurs, then Vi(t− 1) ≤ βin, so∑
Yt = # of balls at positions ≥ i+ 1

≥ # bins with height ≥ i+ 1

Thus, we can bound the bad event as follows:

P[Qi+1 | Qi] ≤ P[
∑

Yt ≥ βin | Qi]

P[Qi+1] = P[Qi+1 ∩Qi] + P[Qi+1 ∩Qi]

≤ P[Qi] + P[
∑

Yt ≥ βi+1n]

≤ P[Qi] + e−βi+1n/6 for large enough βi+1

So, in the case we are dealing with, for βi+1 ≥ 60 log n/n, we bounded our exponential by n−10,
and as a result, P[Qi+1] ≤ n−9.

Thus, the claim is true for i ≤ h, where

βh+1 ≥
60 log n

n
≥ βh+2

and so βh ≥
√

30 logn
n . Notice that we are almost done: βh+1 is close to the desired value of 1

2n .

To get the last portion, we simply need to notice that the number of bins we have to deal with are
small enough that even choosing two randomly is very rare. Notice that the above reasoning give
us that all but αn bins have height < O(log log n) = h where α < O(log n/n). Using this, we know
that the chance that any ball lies at height ≥ h is at most α2. So,

E[# of balls at height ≥ h+ 1] ≤ nα2 ≤ log2 n

n
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This is good, but we want a high probability bound. To do so, generalize our argument as follows:

P[max height ≥ h+ c] ≤ P[≥ c balls above height h]

Finally, we again consider balls individually. Let Zt be the event that the tth ball is at height ≥ h.
Then P[

∑
Zi ≥ c] ≤

(
n
c

)
pc ≤ ( enpc )c and so

p = α2 =⇒ P[
∑

Zi ≥ c] ≤
(

log2 n

n
∗ e
c

)c
≤ n−

c
2

For any given c, we only need to add a constant number to h to get the desired bound, and so we
have high probability of the bound holding in this case as well.
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