Problem Set 2

Randomized Algorithms

Due Tuesday, October 3

1. [Karger.] Consider a sequence of n unbiased coin flips, and look at the
length of the longest contiguous sequence of heads.

(a)
(b)

Show that you are unlikely to see a sequence of length ¢ + log, n
for ¢ > 1 (give a decreasing bound as a function of ¢).

Show that with high probability you will see a sequence of length
log, n — O(logy log,). Note: this observation can be used to
detect cheating. When told to fake a random sequence of coin
tosses, most humans will avoid creating runs of this length under
the mistaken assumption that they dont look random.

2. Negative Association.

(a)

Let X4,..., X, be independent but not necessarily identically dis-
tributed random variables. Let o4, ..., o, be drawn from a permu-
tation distribution on [n]. Are the variables Y; = X, negatively
associated?

Recall the following algorithm from class for estimating the mean
of an unknown random variable X with mean p and variance o2.
Given n = mB samples x1, . .., x,, choose m = O(log(1/d)) blocks
of size O(1/€%). Output

[t := median mean x(g_iyiti.
a icim) jelp (BTt

We showed that the result is within eo of p with probability 1—4.

Now, suppose that our sample zy,...,x, were not independent,
but negatively associated. Would the same result hold?

3. [Karger.] In class we proved that the two-choices approach improves
the maximum load to O(loglogn). A generalization is that choosing
the least loaded of d choices reduces the maximum load to O(log, logn).
Explain what changes to the proof are needed to derive this result. Give
only the diffs; do not bother writing a complete proof.

4. [Karger.] In class, we showed that cuckoo hashing achieves worst case
constant time lookups and expected constant time insertion/deletion,
with O(n) space to store n items. Show how to get the same guar-
antees, but using only (1 + €)n space for a small constant e. For this
problem, assume that you have access to a perfectly random hash func-
tion. Hint: Use the following ideas:

e Probing more than twice in a table increases the chances of finding
an empty cell.

e If after some probes you fail to find an empty cell, move the failed
item into an “overflow” table that uses cuckoo hashing.

