1 Overview: fingerprinting

Fingerprinting is a procedure that maps an arbitrarily large data entity to a much smaller bit string, called fingerprint, that can uniquely identify the original data for all practical purposes in the ideal case [Bro93]. This lecture introduces several different fingerprinting algorithms for matrices and strings, and discusses their performance and cost.

2 An intuitive way: fingerprinting with hash function

Suppose Alice has a string \(x \in \mathcal{U} \) that she wants to send to Bob. Bob has another string \(y \in \mathcal{U} \), and wants to know whether \(x = y \). An intuitive fingerprinting algorithm will be picking a hash function \(h : \mathcal{U} \rightarrow [m] \), and sending the string \(x \) in form of \((h(x), h)\). Then Bob will check whether \(\)\(h(y) = h(x) \). This algorithm has false negative rate = 0, and false positive rate = \(\frac{1}{m} \) or \(\frac{1}{m^2} \) for \(h \in \mathcal{H} \) universal / pairwise independent, respectively.

Unfortunately, the algorithm is not practical due to its prohibitively large space cost. For instance, suppose Alice is using the Carter-Wegman hashing: \(h : [U] \rightarrow [B] \) such that \(h(x) := (ax + b) \mod p \) for some \(a, b \in \mathbb{Z}_p \), \(p \geq U \) for pairwise independence \(h \). Then,

- sending the plain string \(x \) takes \(\log U \) bits, while
- sending \((h(x), h_{a,b})\) takes \(\log B + 2 \log p > \log U \) bits.

3 Matrix equality testing

Problem setting Given matrices \(A, B, C \in \mathbb{R}^{n \times n} \) for some large \(n \), we want to know whether \(AB = C \).

Naive approach Check whether \(AB - C = 0 \). Computing \(AB \) takes \(O(n^3) \) FLOPs. It is possible to improve this step to \(O(n^\nu) \) FLOPs for \(\nu = 2.373 \), which is still prohibitively expensive.

Fingerprinting approach Draw a random binary vector \(r \in \{0, 1\}^n \), with i.i.d. entries. Check whether \(ABr = Cr \). This algorithm takes only \(O(n^2) \) FLOPs to evaluate. Its false negative rate = 0, and we will show that its false positive rate \(\leq \frac{1}{2} \).

Claim 1. The false positive rate = \(\Pr[(AB - C)r = 0 \cap AB \neq C] \leq \frac{1}{2} \).

Proof. We can observe that

\[
\Pr[(AB - C)r = 0 \cap AB \neq C] = \Pr[\text{all non-zero entries in } D := AB - C \text{ cancel each other}]
\leq \Pr[r_j = 1 \mid \sum_{k \neq j} r_k \cdot D(:,k) = -D(:,j)]
= \Pr[r_j = 1] = \frac{1}{2}
\]

\(\square \)
Following the same reasoning, we can show that the false positive rate can be improved to be $\leq \frac{1}{k}$ by drawing $r \in [k]^n$ i.i.d. instead.

4 Polynomial identity testing

Problem Given $P(x)$, $Q(x)$, $R(x) \in R[x]$ polynomials of degree d, d, $2d$, respectively. We ask whether $P(x)Q(x) = R(x)$. More generally, we ask whether $P(x) = Q(x)$, $\deg(P) = \deg(Q) = d$.

Naive approach We can observe that the polynomial $P(x) - Q(x)$ is of degree at most d, and therefore has at most d roots. By picking random elements $x \in [O(d)]$, we can check whether $P(x) - Q(x) = 0$. This method has 0 false negative rate and constant false positive rate $\frac{1}{c}$ when picking $x \in [cd]$. However, the direct evaluation of $P(x)$ and $Q(x)$ involves storing numbers as large as $O(d^d)$ which takes $O(d \log d)$ space.

Fingerprinting We can improve the space cost by projecting $P(x) - Q(x)$ into a finite field \mathbb{F}_p for some prime $p \geq 2d$. Then the polynomial identity test on random $x \in \mathbb{F}_p^*$ has false positive rate $= \frac{d}{p} \leq \frac{1}{2}$. In addition, the Schwartz-Zippel Lemma [Sch80; Zip79] suggests that the same holds for multivariate polynomials. That is, for $\deg(P(x_1, x_2, \ldots)) = d$, let $p \geq 2d$. Choosing $x_1, x_2, \cdots \in \mathbb{F}_p$ randomly, we have $\Pr[P(x_1, x_2, \ldots) = 0 \mid P(x) \neq 0] \leq \frac{d}{p}$.

5 String testing

Suppose Alice has string $a = a_0, \ldots, a_{n-1} \in \{0, 1\}^n$, and Bob has string $b = b_0, \ldots, b_{n-1} \in \{0, 1\}^n$. Suppose they would like to test whether $a = b$ by fingerprinting. Alice then needs to send her choice of hash function h and $h(a)$ so that Bob can check whether $h(a) = h(b)$.

How large does Alice’s message $(h(a), h)$ need to be?

5.1 String testing via Rabin-Karp hashing

We can test whether $a = b$ by treating $\{a_i\}_{i=0}^{n-1}, \{b_i\}_{i=0}^{n-1}$ as coefficients of polynomials.

Using the techniques described for polynomial identity testing, we can fix $p > 2n$ and choose $x \in \{0, \ldots, p - 1\}$ at random and evaluate

$$h(a) = \sum_{i=0}^{n-1} a_i x^i \mod p = \sum_{i=0}^{n-1} b_i x^i \mod p = h(b).$$

This test has a false positive rate of at most $\frac{2}{p}$, since there is at most this chance of randomly choosing $x \in \{0, \ldots, p - 1\}$ as one of the n roots of $\sum_{i=1}^{n-1} a_i x^i$. Taking $p > n^2$ gives failure rate at most $\frac{1}{2}$.

For Alice and Bob to do their fingerprinting test, Alice must send only $O(\log p) \sim O(\log n)$ bits for $h(a)$ and her random choice of $x \in \{0, \ldots, p - 1\}$.

5.1.1 An application of Rabin-Karp Hashing: Pattern Matching

Consider the pattern matching problem, where we are given two strings $a = a_1, \ldots, a_m$ and $b = b_1, \ldots, b_n$ for $m < n$, and we would like to find all indices i such that $a_1, \ldots, a_m = b_i, \ldots, b_{i+m-1}$, i.e. find all the locations where a occurs as a substring in b. Naively, there is an $O(mn)$ algorithm that solves this problem. There is a deterministic $O(m + n) \sim O(n)$ algorithm that solves this problem (KMP algorithm), but it is complicated! We can solve this problem in $O(n)$ time with high probability using Rabin-Karp hashing.

We choose h to be

$$h(a) = \sum_{j=1}^{m} a_j x^{m-j} \mod p.$$
Then, given $h(b_1, \ldots, b_m)$, there is a simple formula for evaluating $h(b_2, \ldots, h_{m+2})$:

$$h(b_2, \ldots, h_{m+2}) = \sum_{j=2}^{m+1} b_j x^{m+1-j} \mod p = x h(b_1, \ldots, b_m) + b_{m+1} - b_1 x^{m+1} \mod p.$$

More generally, given $h(a)$ and $h(b_{i-1}, \ldots, b_{i-1+m})$ for $i \in \{2, \ldots, n - m\}$, we can compute $h(b_i, \ldots, b_{i+m})$ in $O(1)$ time. This gives an $O(m + n)$ algorithm for the pattern matching problem.

The expected number of false matches is at most $n \cdot \frac{m}{p}$, using the union bound over all length m substrings of b. Taking $p > n^3$ gives failure rate at most $1/n$.

Above is a Monte-Carlo algorithm that runs in $O(m + n)$ time. We can make it a Las Vegas algorithm by doing an exhaustive check on each substring of b that tests positively as matching a. This would take $O(n + am)$ time, where α is the number of occurrences of a in b.

5.2 String testing via primality testing

Consider again the problem of testing equality of strings $a = a_0, \ldots, a_{n-1} \in \{0, 1\}^n$ and $b = b_0, \ldots, b_{n-1} \in \{0, 1\}^n$ using fingerprinting techniques. Using Rabin-Karp, we chose $h(a) = \sum_{i=0}^{n-1} a_i x^i \mod p$ for $p > n$ fixed and $x \in \mathbb{F}_p$ chosen at random.

Alternatively, we can fix x and choose p at random. This is analogous to treating a and b as bit strings that represent integers $\sum_i a_i 2^i$, $\sum_i b_i 2^i$.

Clearly, the false positive rate is 0, but for $a \neq b$, what is the probability that $a - b \equiv 0 \mod p$ for a random choice of p? We have a false positive iff $p|(a - b)$, where $(a - b)$ is an $(n + 1)$ bit number. Since $a - b \leq 2^{n+1}$, it has at most $O(n)$ prime factors, as a prime factor is at least 2.

The density of prime numbers is $O(1/\log n)$. Therefore, if we choose p a random prime such that $1 \leq p \leq O(n^2 \log n)$, then there will be at most n^2 primes to choose from. Only n of them happen to divide $(a - b)$. This gives false positive rate at most $1/n$. For Alice and Bob to do their fingerprinting test, Alice only needs $O(\log k) \sim O(\log n)$ bits to share her fingerprint and her random choice of prime p.

How do we choose a random prime? If we can primality test, we can do $O(\log n)$ queries until we find one, with high probability. The Agarwal-Biswas algorithm uses the fact that for N a positive integer

$$(z^N + 1) \equiv (z + 1)^N \mod N \iff N \text{ is prime}.$$

Instead of evaluating the above (mod N), they evaluate it (mod Q) for some random choice of Q. The details are outside the scope of this lecture. The primality test succeeds with high probability and can be executed in polylog time.

References

