1 The Hand Raising Game

First, we will play a game. Everyone will close their eyes, and each person will either raise their hands or not. We get a prize if exactly one person raises their hands.

If the number of people \(n \) is known, each person randomly raise with probability \(\frac{1}{n} \). The probability that exactly one person acts is

\[
n \left[\frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} \right] \approx n \left[\frac{(e^{1/n})^{n-1}}{n} \right] \approx e^{-1+1/n} \approx \frac{1}{e}
\]

This works fine, but what if the exact number of people \(n \) is unknown? What if we only have an upperbound \(N \geq n \) on the number of people? Can we still get a reasonable probability of success for any sampling size of \(n \leq N \)?

We could make a guess \(k \) on the number of people, and raise our hands with probability \(\frac{1}{k} \). Let \(k = \frac{N}{2} \), we then individually act with probability \(\frac{1}{k} = \frac{2}{N} \), so the success probability is approximately \(\frac{2n}{N} e^{-\frac{n}{N}} \). This is bad when \(n \) is small. If our guess is on a different order of magnitude, we are unlikely to succeed. But if our guess within a small factor of the correct answer, we have a good chance of success.

We first guess an order of magnitude, \(k \in \{2^0, 2^1, \ldots, 2^{\log n}\} \). Then, we raise our hands with probability \(\frac{1}{k} \). The probability of success then is at least the probability we chose the correct order of magnitude, \(\frac{1}{\log(n)} \), times the probability of success if we guessed right, \(\frac{1}{2e} \). The expected probability of success w.r.t. the choice of \(k \) becomes \(\frac{1}{2e \log(n)} \).

We will utilize this to retrieve shortest paths in the later section.

2 Deterministic All Pair Shortest Path (APSP)

Given a dense graph \(G = (V, E) \) with \(|V| = n \) vertices, \(|E| \approx \left(\frac{n}{2}\right)^2 = O(n^2) \) edges with integer weights, find \(D_{u,v} \) the shortest distance from \(u \) to \(v \), for all \(u, v \in V \).

Deterministic algorithms are:

- Floyd-Warshall: \(O(|V|^3) = O(n^3) \)
- Bellman-Ford: $O(|V| \cdot |V||E|) = O(n^4)$
- Johnson (Bellman-Ford + Dijkstra): $O(|V||E| + |V| \log |V|) = O(n^3)$
- BFS: $O(|V| \cdot (|V| + |E|)) = O(n^3)$

3 Approximation Algorithm

We want to approximate all pair shortest distances up to factor of 2, i.e. $\hat{D}_{u,v} \in \left[\frac{1}{2}, 2\right]$. Let A be adjacency matrix with edges between all pairs and self-loop, $A_{i,j} = \begin{cases} 1 & ; (i, j) \in E \text{ or } i = j \\ 0 & ; \text{otherwise} \end{cases}$

Consider A^k, the entry $A^k_{u,v} \neq 0$ if and only if there is a path of length less than or equal to k between u and v. Since the longest possible path is of length $n - 1$, we need to consider no more than A^n. The solution to approximate APSP distances is then to compute $A^1, A^2, A^4, A^8, \ldots, A^n$ where $n' = n^{\lceil \log n \rceil}$ and find the earliest non-zero entry for each pair (u, v).

The time complexity for matrix multiplications and searching will be $O(n^\omega \log n + n^2 \log n) = O(n^\omega \log n)$ for smallest known exponent ω for matrix multiplication algorithm (currently, $\omega = 2.373$). Note the second term, the term for finding the first entry, can be reduced to $O(n^2 \log \log n)$ through binary search. In any case, the first term for the matrix multiplications will dominate the search time.

4 All Pair Shortest Path Distance

Suppose $A' = A^2$ and we know $D'_{u,v}$, the APSP distances using A' as the adjacency matrix, we can infer $D_{u,v}$ efficiently as below.

Certainly, $D'_{u,v} = \left\lceil \frac{D_{u,v}}{2} \right\rceil$ because all paths of length 2 on A are contained in A^2 and any shortest path can be shortened by a factor of two plus the parity. Therefore, if we can determine the parity (odd or even) of $D_{u,v}$, we can infer it from $D'_{u,v}$.

One way to do this is to look at the $D'_{u,w}$ for w where $(w, v) \in E$. If $D_{u,v} = k$ exactly if the minimum of its neighbors are distance $k - 1$. Thus for this minimum neighbor w, if k is even, then $D'_{u,w} = \left\lfloor \frac{D_{u,w}}{2} \right\rfloor = k/2$, and if k is odd $D'_{u,w} = k-1/2$.

Thus $D_{u,v}$ is even if and only if $D'_{u,w} \geq D'_{u,v}$ for all neighbors w (in other words, $D_{u,v}$). Similarly, $D_{u,v}$ is odd if and only if $D'_{u,w} < D'_{u,v}$ for some neighbors w. Unfortunately, trying all neighbors would take $O(n)$ time.

To efficiently find such w for each, use matrix multiplication. Note that if $D_{u,v}$ is even, then $\forall w, (w, v) \in E : D'_{u,w} \geq D'_{u,v}$. If $D_{u,v}$ is odd, then $\forall w, (w, v) \in E : D'_{u,w} \leq D'_{u,v}$ and $\exists w, (w, v) \in$
\[D_{u,w} = D'_{u,w} - 1 \]. The product of \(A \) and \(D' \) can result in two outcomes:

\[
(AD')_{uv} = \sum_{w : A_{w,v} = 1} D'_{u,w} = \begin{cases}
D'_{u,w} |N(u)| & D_{u,v} \equiv 0 \mod 2 \\
\leq D'_{u,w} |N(u)| - 1 & D_{u,v} \equiv 1 \mod 2
\end{cases}
\]

Therefore, given \(D' \), we can infer \(D \) in \(O(n^{\omega} + n^2) = O(n^{\omega}) \). Call this routine recursively, dividing \(n \) be half each times. The overall time complexity becomes \(O(n^{\omega} \log n) \).

5 APSP from APSP Distances

Now we have a deterministic algorithm that gives us APSP distance, but not the paths themselves. To retrieve the path, utilize the strategy to solve the hand raising game.

Tripartite Graph: Consider a graph with three disjoint sets of vertices \(X, Y, Z \) where \(X \cup Y \cup Z = V \) and \(E \subseteq \{(x,y) | x \in X, y \in Y\} \cup \{(y,z) | y \in Y, z \in Z\} \). Given \(x \in X \) and \(z \in Z \), we want to find \(y \in Y \) such that there is a path \((x,y,z)\).

- The easiest case is when there is exactly one unique \(y^{(*)} \) or none. Let \(E_1 \subseteq \{(x,y) | x \in X, y \in Y\} \) and \(E_2 = \{(y,z) | y \in Y, z \in Z\} \), construct corresponding adjacency matrices \(A_1 \) and \(A_2 \). We can find such \(y^{(*)} \) of a pair \((x,z)\) because \(A_1(x,y^{(*)}) \neq 0 \) and \(A_2(y^{(*)}, z) \neq 0 \).

 We want to do matrix multiplication to look for the path, but we will encode the intermediate \(y \) in the value of the result. To do this, after the first matrix multiplication when we get \(y \), we will multiply by a diagonal matrix that will set the value of the \(y \) appropriately. Since only one of these intermediate \(y \)'s map to \(z \), the magnitude of the result will indicate the \(y \) that was taken.

\[
(A_1 \ diag(1, 2, \ldots, |Y|) \ A_2)_{x,z} = \sum_{y=1}^{|Y|} y A_1(x,y) A_2(y,z) = \begin{cases}
y^{(*)} & \text{if } y^{(*)} \text{ exists} \\
0 & \text{otherwise}
\end{cases}
\]

- Suppose there are exactly \(n \) of such \(y \), we can randomly choose a subset of \(Y \), each with probability of inclusion \(1/n \), and use the method above. The probability that we select exactly one such \(y \) is equal to the probability proved earlier in the hand raising problem with known number of people.

- Similarly, if the number of such \(y \) is unknown, we first guess the number of \(y \) with exponential orders and follow the procedure in the two cases above. The probability of success is then

 \[P[\text{unique } y \text{ is selected}] \geq \frac{1}{2e} \cdot \frac{1}{\log n} \]

 Repeat this \(O(\log^2 n) \) times and we will succeed w.h.p. Note that verifying a \(y \) is correct takes constant time, so we only need high probability we will guess correctly once.

Back to our dense graph, for all pairs \((u,v)\), we’d like to find \(w^{(*)} \) s.t. \((w^{(*)}, v) \in E \) and is contained in the shortest path of length \(D_{u,v} \); in other words, \(D_{u,v} = D_{u,w^{(*)}} + A_{w^{(*)}, v} \) by property of shortest path.
In specific case where $D_{u,v} = L$, we know that $D_{u,w(*)} = L - 1$ and $A_{w(*)v} = 1$. We can define a matrix $F^{(L)} \in \{0,1\}^{n \times n}$ where $F^{(L)}_{i,j} = 1$ iff $D_{i,j} = L - 1$. So, if L is fixed, we now reduce the problem to the tripartite problem, where $A_1 = F^{(L)}$ and $A_2 = A$. To solve for all possible L, we need to compute $F^{(1)}, \ldots, F^{(n-1)}$ which solely takes $O(n^3)$ time.

However, recall that $D_{u,w} \in \{L - 1, L, L + 1\}$ for all w, $(w, v) \in E$, so we can split all pairs (u, v) into 3 groups: $\{(u, v)|D_{u,v} \equiv l \mod 3\}$ for $l \in \{0, 1, 2\}$. Instead of $F^{(l)}$, we compute

$$G^{(l)}_{i,j} = \begin{cases} 1 & \text{if } D_{i,j} \equiv l \mod 3 \\ 0 & \text{otherwise} \end{cases}$$

Solve each one separately, the total time complexity is $O(n^\omega \log^2 n)$ with high probability of success.